官术网_书友最值得收藏!

Minor

Every element in a matrix has a minor. The minor of an element is the determinant of a smaller matrix that eliminates the row and column of the element. For example, consider a 3 x 3 matrix—what is the minor of element 2, 1?

First, eliminate row 2 and column 1 from the matrix. This will result in a smaller 2 x 2 matrix. The determinant of this 2 x 2 matrix is the minor of element 2, 1. The following diagram demonstrates this:

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

Figure 3.6: The minor of element 2, 1 in a 3 x 3 matrix

This formula works for higher-dimension matrices as well. For example, the minor of an element in a 4 x 4 matrix is the determinant of some smaller, 3 x 3 matrix. A matrix of minors is a matrix where every element is the minor of the corresponding element from the input matrix.

主站蜘蛛池模板: 理塘县| 永仁县| 施秉县| 石阡县| 福州市| 霍山县| 封开县| 唐山市| 湟中县| 金昌市| 建宁县| 海盐县| 海林市| 宝丰县| 海阳市| 娱乐| 樟树市| 元朗区| 交口县| 武夷山市| 甘德县| 娱乐| 虞城县| 崇左市| 滨州市| 宁南县| 光山县| 南康市| 田东县| 南通市| 石河子市| 高雄县| 梧州市| 于田县| 阿瓦提县| 涪陵区| 石阡县| 巫溪县| 平顶山市| 昭平县| 平乡县|