官术网_书友最值得收藏!

Chain rule

Let's take an arbitrary function f that takes variables x and y as input, and there is some change in either variable so that . Using this, we can find the change in f using the following:

This leads us to the following equation:

Then, by taking the limit of the function as , we can derive the chain rule for partial derivatives.

We express this as follows:

We now divide this equation by an additional small quantity (t) on which x and y are dependent, to find the gradient along . The preceding equation then becomes this one:

The differentiation rules that we came across earlier still apply here and can be extended to the multivariable case.

主站蜘蛛池模板: 咸阳市| 大荔县| 华蓥市| 盖州市| 卫辉市| 姜堰市| 静海县| 甘泉县| 临桂县| 岳普湖县| 浦县| 互助| 盐源县| 连城县| 闵行区| 阜南县| 镶黄旗| 米脂县| 枣庄市| 石河子市| 壶关县| 开江县| 岳池县| 南丰县| 绥阳县| 资兴市| 宜州市| 定结县| 曲麻莱县| 瑞安市| 江西省| 什邡市| 海淀区| 静海县| 松潘县| 吉安市| 漾濞| 景德镇市| 普格县| 乌兰县| 永胜县|