官术网_书友最值得收藏!

Singular value decomposition

Singular Value Decomposition (SVD) is widely used in linear algebra and is known for its strength, particularly arising from the fact that every matrix has an SVD. It looks like this:

For our purposes, let's suppose , , , and , and that U, V are orthogonal matrices, whereas ∑ is a matrix that contains singular values (denoted by σi) of A along the diagonal. 

in the preceding equation looks like this:

We can also write the SVD like so:

Here, ui, vi are the column vectors of U, V.

主站蜘蛛池模板: 合川市| 民勤县| 乐东| 清徐县| 太和县| 娱乐| 武宣县| 乳源| 会东县| 大洼县| 曲水县| 洪泽县| 马关县| 乌拉特前旗| 巴彦淖尔市| 灌阳县| 和林格尔县| 马龙县| 玛沁县| 汾阳市| 宿州市| 祁门县| 运城市| 泰顺县| 洪湖市| 南丹县| 延吉市| 宿松县| 鞍山市| 通河县| 朔州市| 垣曲县| 旬邑县| 南部县| 玛多县| 剑阁县| 桂平市| 福鼎市| 洛宁县| 浮梁县| 洛浦县|