官术网_书友最值得收藏!

Linear maps

A linear map is a function , where V and W are both vector spaces. They must satisfy the following criteria:

  • , for all 
  • , for all  and 

Linear maps tend to preserve the properties of vector spaces under addition and scalar multiplication. A linear map is called a homomorphism of vector spaces; however, if the homomorphism is invertible (where the inverse is a homomorphism), then we call the mapping an isomorphism

When V and W are isomorphic, we denote this as , and they both have the same algebraic structure.

If V and W are vector spaces in , and , then it is called a natural isomorphism. We write this as follows:

Here,  and  are the bases of V and W. Using the preceding equation, we can see that , which tells us that  is an isomorphism. 

Let's take the same vector spaces V and W as before, with bases  and  respectively. We know that  is a linear map, and the matrix T that has entries Aij, where  and  can be defined as follows:

.

From our knowledge of matrices, we should know that the jth column of A contains Tvj in the basis of W.

Thus,  produces a linear map , which we write as .

主站蜘蛛池模板: 汤原县| 彭阳县| 雅江县| 杂多县| 宣城市| 朝阳县| 巴楚县| 扎囊县| 吉林省| 望都县| 义乌市| 大田县| 渑池县| 天柱县| 毕节市| 黄梅县| 宁波市| 康乐县| 舒城县| 玉溪市| 平定县| 方城县| 盐源县| 台东市| 阿巴嘎旗| 东乡| 靖州| 含山县| 揭东县| 普安县| 板桥市| 永寿县| 南昌县| 崇左市| 桦甸市| 从化市| 五莲县| 资兴市| 连江县| 兰考县| 夏津县|