官术网_书友最值得收藏!

Cross product

The cross product is written as a X between two vectors, Cross product. It returns a new vector that is perpendicular to both vectors Cross product and Cross product. That is, the result of the cross product points 90 degrees from both vectors.

The cross product is defined only for three-dimensional vectors. This is because any two non-parallel vectors form a plane, and there will always exist a line perpendicular to that plane. As such, we will only be implementing the cross product for the vec3 structure.

The equation of the cross product is as follows:

Cross product

Getting ready

The formula behind the cross product seems large and complicated. We're going to implement a pattern in code that hopefully will make remembering this formula easy.

How to do it…

The cross product is only well defined for three dimensional vectors. Follow these steps to implement the cross product in an intuitive way:

  1. Add the declaration for the cross product to vectors.h:
    vec3 Cross(const vec3& l, const vec3& r);
  2. Start the implementation in vectors.cpp:
    vec3 Cross(const vec3& l, const vec3& r) {
       vec3 result;
       // We will add more code here
       return resut;
    }
  3. Start by listing out the x, y, and z components of the result in a column:
    vec3 Cross(const vec3& l, const vec3& r) {
       vec3 result;
       result.x = /* Will finish in step 6 */
       result.y = /* Will finish in step 6 */
       result.z = /* Will finish in step 6 */
       return resut;
    }
  4. Flesh out the first row by multiplying l.y and r.z. Notice how the first column contains x, y, and z components in order and so does the first row:
    vec3 Cross(const vec3& l, const vec3& r) {
       vec3 result;
       result.x = l.y * r.z /* Will finish in step 6 */
       result.y = /* Will finish in step 6 */
       result.z = /* Will finish in step 6 */
       return resut;
    }
  5. Follow the x, y, z pattern for the rest of the rows. Start each row with the appropriate letter following the letter of the first column:
    vec3 Cross(const vec3& l, const vec3& r) {
       vec3 result;
       result.x = l.y * r.z /* Will finish in step 6 */
       result.y = l.z * r.x /* Will finish in step 6 */
       result.z = l.x * r.y /* Will finish in step 6 */
       return resut;
    }
  6. Finally, complete the function by subtracting the mirror components of the multiplication from each row:
    vec3 Cross(const vec3& l, const vec3& r) {
       vec3 result;
       result.x = l.y * r.z - l.z * r.y;
       result.y = l.z * r.x - l.x * r.z;
       result.z = l.x * r.y - l.y * r.x;
       return resut; // Done
    }

How it works…

We're going to explore the cross product using three normal vectors that we know to be perpendicular. Let vector How it works…, How it works…, and How it works… represents the basis of How it works…, three-dimensional space. This means we define the vectors as follows:

  • How it works… points right; it is of unit length on the x axis: How it works…
  • How it works… points up; it is of unit length on the y axis: How it works…
  • How it works… points forward; it is of unit length on the z axis: How it works…

Each of these vectors are orthogonal to each other, meaning they are 90 degrees apart. This makes all of the following statements about the cross product true:

  • Right X Up = Forward, How it works…
  • Up X Forward = Right, How it works…
  • Forward X Right = Up, How it works…

The cross product is not cumulative, How it works…is not the same as How it works…. Let's see what happens if we flip the operands of the preceding formulas:

  • Up X Right = Backward, How it works…
  • Forward X Up = Left, How it works…
  • Right X Forward = Down, How it works…

Matrices will be covered in the next chapter, if this section is confusing, I suggest re-reading it after the next chapter. One way to evaluate the cross product is to construct a 3x3 matrix. The top row of the matrix consists of vector How it works…, How it works…, and How it works… . The next row comprises the components of the vector on the left side of the cross product, and the final row comprises the components of the vector on the right side of the cross product. We can then find the cross product by evaluating the pseudo-determinant of the matrix:

How it works…

We will discuss matrices and determinants in detail in Chapter 2, Matrices. For now, the preceding determinant evaluates to the following:

How it works…

The result of How it works… is a scalar, which is then multiplied by the How it works… vector. Because the How it works… vector was a unit vector on the x axis, whatever the scalar is will be in the x axis of the resulting vector. Similarly, whatever How it works… is multiplied by will only have a value on the y axis and whatever How it works… is multiplied by will only have a value on the z axis. The preceding determinant simplifies to the following:

How it works…
主站蜘蛛池模板: 偃师市| 清水县| 固阳县| 荔波县| 时尚| 疏附县| 纳雍县| 西贡区| 师宗县| 巧家县| 通海县| 新民市| 华池县| 兴山县| 游戏| 正安县| 河池市| 鸡东县| 绿春县| 黎平县| 怀远县| 登封市| 盐津县| 武胜县| 和顺县| 咸宁市| 什邡市| 射洪县| 平和县| 阿拉善左旗| 哈密市| 九龙城区| 大悟县| 长岛县| 翼城县| 罗江县| 吉木乃县| 台中市| 浑源县| 长沙县| 澄江县|