- 村鎮有機廢物堆肥及土壤利用
- 席北斗 何小松 檀文炳 趙昕宇等
- 2362字
- 2020-04-30 17:34:41
參考文獻
[1] Stevenson F J. Humus chemistry: genesis, composition, reactions. Soil Science, 1982, 135, 129-130.
[2] Ait B, Cegarra J, Merlina G, Revel J , Hafidi M. Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste-wheat straw mixture. Journal of Hazardous Materials 2009, 165, 1119.
[3] Xi B, Zhao X, He X, Huang C, Tan W, Gao R, Hui Z, Dan L. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresource Technology, 2016, 219, 204-211.
[4] Liang C, Balser T C. Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 2011, 9, 75; author reply 75.
[5] Simpson A J, Simpson M J, Smith E, Kelleher B P. Microbially derived inputs to soil organic matter: are current estimates too low? Environmental Science & Technology, 2007, 41, 8070.
[6] Parsons J W. Chemistry and distribution of amino sugars in soils and soil organisms. Soil Biochemistry, 1981.
[7] 魯如坤: 土壤農業化學分析方法.北京: 中國農業科技出版社, 2000.
[8] Wu J, Zhao Y, Zhao W, Yang T, Zhang X, Xie X, Cui H, Wei Z. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresource Technology, 2017, 226, 191.
[9] Tan K H, Tan K H. Humic matter in soil and the environment: principles and controversies, CRC Press, 2003.
[10] G HARDIE A, J DYNES J, M KOZAK L, M HUANG P. The role of glucose in abiotic humification pathways as catalyzed by birnessite. Journal of Molecular Catalysis A Chemical, 2009, 308, 114-126.
[11] Smilek J, Sedl??ek P, Kalina M, Klu
??kov?? M. On the role of humic acids' carboxyl groups in the binding of charged organic compounds. Chemosphere, 2015, 138, 503-510.
[12] Su J Q, Wei B, Ou-Yang W Y, Huang F Y, Zhao Y, Xu H J, Zhu Y G. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science & Technology, 2015, 49, 7356-7363.
[13] 張增強, 唐新保. 污泥堆肥化處理對重金屬形態的影響. 農業環境科學學報, 1996, 188-190.
[14] Lovley D, Nevin K P. Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(Ⅲ) During Reduction of Insoluble Fe(Ⅲ) Oxide of Geobacter Metallireducens, 2000.
[15] Wu C, Zhuang L, Zhou S, Yuan Y, Yuan T, Li F. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microbial Biotechnology, 2013, 6, 141-149.
[16] Pifer A D, Fairey J L. Improving on SUVA 254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control. Water Research, 2012, 46, 2927.
[17] Zhao Y, Wei Y, Zhang Y, Wen X, Xi B, Zhao X, Zhang X, Wei Z. Roles of composts in soil based on the assessment of humification degree of fulvic acids. Ecological Indicators, 2017, 72, 473-480.
[18] Chen Y, Senesi N, Schnitzer M. Information Provided on Humic Substances by E4/E6 Ratios. Soil Science Society of America Journal, 1977, 41, 352-358.
[19] 李鳴曉, 何小松, 劉駿, 席北斗, 趙越, 魏自民, 姜永海, 蘇婧, 胡春明. 雞糞堆肥水溶性有機物特征紫外吸收光譜研究. 光譜學與光譜分析. 2010, 30, 3081-3085.
[20] Zhao Y, Wei Y Q, Li Y, Xi B D, Wei Z M, Wang X L, Zhao Z N, Ding J. Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials. Guang pu xue yu guang pu fen xi,2015, 35, 961.
[21] Helms J R, Stubbins A, Ritchie J D, Minor E C, Kieber D J, Mopper K. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology & Oceanography, 2008, 53, 955-969.
[22] Ratasuk N, Nanny M A. Characterization and quantification of reversible redox sites in humic substances. Environmental Science & Technology, 2007, 41, 7844.
[23] Boehme J R, Coble P G. Characterization of Colored Dissolved Organic Matter Using High-Energy Laser Fragmentation. Environmental Science & Technology, 2000, 34, 3283-3290.
[24] Leenheer J A, CrouéJ P. Characterizing aquatic dissolved organic matter. Environmental Science & Technology, 2003, 37, 18A.
[25] Yamashita Y, Jaffé R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environmental Science & Technology, 2008, 42, 7374.
[26] Hudson N, Baker A, Ward D, Reynolds D M, Brunsdon C, Carliell-Marquet C, Browning S. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Science of the Total Environment, 2008, 391, 149.
[27] Yang C, Xiao-Song H E, Bei-Dou X I, Huang C H, Cui D Y, Gao R T, Tan W B, Zhang H. Characteristic Study of Dissolved Organic Matter for Electron Transfer Capacity During Initial Landfill Stage. Chinese Journal of Analytical Chemistry, 2016, 44, 1568-1574.
[28] 趙越, 何小松, 席北斗, 于會彬, 魏自民, 李鳴曉, 王威. 雞糞堆肥有機質轉化的熒光定量化表征. 光譜學與光譜分析. 2010, 30, 1555-1560.
[29] He X, Xi B, Wei Z, Guo X, Li M, An D, Liu H. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere, 2011, 82, 541-548.
[30] Thakur K A M, Kean R T, Hall E S, Kolstad J J S, Munson E. J. High-Resolution 13C and 1H Solution NMR Study of Poly(lactide). Macromolecules, 1997, 30, 2422-2428.
[31] Tamao K, Akita M, Maeda K, Kumada M. Silafunctional compounds in organic synthesis. 32. Stereoselective halogenolysis of alkenylsilanes: stereochemical dependence on the coordination state of the leaving silyl groups. Cheminform, 1987, 52, 543-551.
[32] Li Y, Wang S, Zhang L. Composition, source characteristic and indication of eutrophication of dissolved organic matter in the sediments of Erhai Lake. Environmental Earth Sciences, 2015, 74, 3739-3751.
[33] Lobartini J C, Tan K H, 夏榮基. 用~(13)核磁共振、掃描電鏡以及紅外光譜分析測定的胡敏酸特性的差異. 腐植酸, 1992, 50-54.
[34] Fujit, Kawah. 暗色土不同粒度腐植酸組分的碳-13核磁共振光譜(13C-NMR)及元素組成. 腐植酸, 2000, 41-44.
[35] Wilson M A, Collin P J, Tate K R. 1H-nuclear magnetic resonance study of a soil humic acid. European Journal of Soil Science, 2010, 34, 297-304.
[36] Chefetz B, Hader Y, Chen Y. Dissolved Organic Carbon Fractions Formed during Composting of Municipal Solid Waste: Properties and Significance. CLEAN - Soil, Air, Water, 2010, 26, 172-179.
[37] 余守志, 陳榮峰, 蔡名方, 劉運愛. 八種腐植酸的~1H和~(13)C核磁共振波譜. 燃料化學學報, 1986, 92-97.
[38] Christensen J B, Jensen D L, Gr?n C, Filip Z, Christensen T H. Characterization of the dissolved organic carbon in landfill leachate-polluted ground-water. Water Research, 1998, 32, 125-135.
[39] Kononova M M. Soil organic matter, its nature, its role in soil formation and in soil fertility. 1966.
[40] H?ttenschwiler S, Hagerman A E, Vitousek P. M. Polyphenols in litter from tropical montane forests across a wide range in soil fertility. Biogeochemistry, 2003, 64, 129-148.
[41] Amir S, Jouraiphy A, Meddich A, Gharous M. E, Winterton P, Hafidi M. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, 2010, 177, 524-529.
[42] Ying Z, Selvam A, Wong J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology, 2014, 168, 229.
[43] Lhadi E K, Tazi H, Aylaj M, Genevini P L, Adani F. Organic matter evolution during co-composting of the organic fraction of municipal waste and poultry manure. Bioresource Technology, 2006, 97, 2117-2123.
[44] Cao Y, Chang Z, Wang J, Ma Y, Fu G. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure. Bioresource Technology, 2013, 136, 664.
[45] Said-Pullicino D, Erriquens F G, Gigliotti G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresource Technology, 2007, 98, 1822-1831.
[46] Brenes A, Viveros A, Goi I, Centeno C, Sauracalixto F, Arija I. Effect of grape seed extract on growth performance, protein and polyphenol digestibilities, and antioxidant activity in chickens. Spanish Journal of Agricultural Research, 2010, 8, 326-335.
[47] Hachicha R, Rekik O, Hachicha S, Ferchichi M, Woodward S, Moncef N, Cegarra J, Mechichi T. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 2012, 88, 677-682.
[48] Wei Y, Wei Z, Cao Z, Zhao Y, Zhao X, Lu Q, Wang X, Zhang X. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Bioresource Technology, 2016, 211, 610.
[49] Xi B, He X, Dang Q, Yang T, Li M, Wang X, Li D, Tang J. Effect of multi-stage inoculation on the bacterial and fungal community structure during organic municipal solid wastes composting. Bioresource Technology, 2015, 196, 399.
[50] Zhang J, Zeng G, Chen Y, Yu M, Yu Z, Li H, Yu Y, Huang H. Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresource Technology, 2011, 102, 2950.
[51] Porras J, Fern??ndez J. J, Torrespalma R. A, Richard C. Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer. Environmental Science & Technology, 2014, 48, 2218-2225.
[52] 魏自民, 吳俊秋, 趙越, 楊天學, 席北斗, 時儉紅, 文欣, 李東陽. 堆肥過程中氨基酸的產生及其對腐植酸形成的影響. 環境工程技術學報, 2016, 6, 377-383.
[53] 曾清如. 化學改性腐植酸和沉積物對有機農藥吸附特征研究.北京: 中國科學院生態環境研究中心, 2005.
[54] 席北斗, 劉鴻亮, 白慶中, 黃國和, 曾光明, 李英軍. 堆肥中纖維素和木質素的生物降解研究現狀. 環境工程學報, 2002, 3, 19-23.