- 知識圖譜:方法、實踐與應(yīng)用
- 王昊奮 漆桂林等
- 346字
- 2020-04-03 12:54:51
參考文獻
[1] John F.Sowa:Principles of Semantic Networks: Exploration in the Representation of Knowledge,Morgan Kaufmann Publishers, INC.San Mateo, California, 1991.
[2] Allan M Collins,M R Quillian.Retrieval time from semantic memory.Journal of Verbal Learning and Verbal Behavior,1969,8(2): 240–247.
[3] M Ross Quillian, Semantic Memory.Unpublished Doctoral Dissertation, Carnegie Institute of Technology,1966.
[4] Franz Baader,Ian Horrocks,Ulrike Sattler .Description Logics//Frank van Harmelen,Vladimir Lifschitz,Bruce Porter.Handbook of Knowledge Representation.Elsevier,2008:135-179.
[5] Ronald J Brachman,James G Schmolze.An Overview of the KL-ONE Knowledge Representation System,Cognitive Science,1985,9(2):171-216.
[6] Alfred Horn.On Sentences Which are True of Direct Unions of Algebras.Symbolic Logic,1951,16 (1):14–21.
[7] Marvin Minsky.A Framework for Representing Knowledge.Computation & intelligence,1995:163-189.
[8] Tomas Mikolov,Ilya Sutskever,Kai Chen,et al.Distributed Representations of Words and Phrases and Their Compositionality.Advances in Neural Information Processing Systems,2013:3111-3119.
[9] Antoine Bordes,Jason Weston,Nicolas Usunier.Open Question Answering with Weakly Supervised Embedding Models.Joint European Conference on Machine Learning and Knowledge Discovery in Databases,2014:165-180.
[10] Joachim Daiber,Max Jakob,Chris Hokamp,et al.Improving Efficiency and Accuracy in Multilingual Entity Extraction.Proceedings of the 9th International Conference on Semantic Systems,2013:121-124.
[11] WANG Quan,MAO Zhendong,WANG Bin,et al.Knowledge Graph Embedding:A Survey of Approaches and Applications.IEEE Transactions on Knowledge and Data Engineering,2017:2724-2743.
[12] Antoine Bordes,Nicolas Usunier,Alberto García-Durán,et al.Translating Embeddings for Modeling Multi-relational Data.NIPS,2013:2787-2795.
[13] Maximilian Nickel,Volker Tresp,Hans-Peter Kriegel.A Three-Way Model for Collective Learning on Multi-Relational Data.ICML,2011:809-816.
[14] YANG Bishan,Wen-tau Yih,HE Xiaodong,et al.Embedding Entities and Relations for Learning and Inference in Knowledge Bases.ICLR 2015.
[15] Théo Trouillon,Johannes Welbl,Sebastian Riedel,et al.Complex Embeddings for Simple Link Prediction.ICML,2016:2071-2080.
[16] GUO Shu,WANG Quan,WANG Bin,et al.Semantically Smooth Knowledge Graph Embedding.Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing,2015:84-94.
[17] LIN Yankai,LIU Zhiyuan,LUAN Huanbo,et al.Modeling Relation Paths for Representation Learning of Knowledge Bases.EMNLP,2015:205-714.
[18] WANG Zhen,ZHANG Jianwen,FENG Jianlin,et al.Knowledge Graph and Text Jointly Embedding.EMNLP,2014:1591-1601.
[19] GUO Shu,WANG Quan,WANG Lihong,et al.Knowledge Graph Embedding with Iterative Guidance from Soft Rules.Thirty-Second AAAI Conference on Artificial Intelligence,2018.
[20] ZHANG Fuzheng,Nicholas Jing Yuan,LIAN Defu,et al.Collaborative Knowledge Base Embedding for Recommender Systems.KDD,2016:353–362.
- 深度序列模型與自然語言處理:基于TensorFlow 2實踐
- 未來版圖:全球聰明公司的科技創(chuàng)新趨勢和商業(yè)化路徑
- ARM Cortex-A8處理器原理與應(yīng)用
- 優(yōu)化理論與實用算法
- Java Web云應(yīng)用開發(fā)
- 算法分析導(dǎo)論(第2版)
- 大學(xué)計算機基礎(chǔ)實踐教程(第2版)
- 計算機應(yīng)用基礎(chǔ)(微課版)
- 云計算安全與隱私
- 搞定系統(tǒng)設(shè)計:面試敲開大廠的門
- 計算機應(yīng)用基礎(chǔ)立體化教程
- 從跨界到專精:T型產(chǎn)品經(jīng)理的自我修煉
- 中小型計算機網(wǎng)絡(luò)設(shè)計、維護與管理
- 計算機應(yīng)用基礎(chǔ)(Windows 7+ Office 2010)(微課版)
- 數(shù)字廣告系統(tǒng):技術(shù)、產(chǎn)品與市場