舉報

會員
清潔與可再生能源研究:能源效率
最新章節(jié):
References
本書匯集了清潔可再生能源研究能源效率分冊方向的八篇碩士研究生論文,主要內(nèi)容涉及了斯特林發(fā)動機(jī)特性研究與數(shù)值模擬、斯特林發(fā)動機(jī)特性研究與數(shù)值模擬、基于ANN和ANFIS模型的地源熱泵系統(tǒng)性能評估、SBA-15類水滑石的制備及其吸附CO2CH4的實(shí)驗(yàn)研究等多個具體研究課題。
最新章節(jié)
- References
- 4.5 Conclusions
- 4.4 Sensitive Analysis of Chemical Looping Systems
- 4.3 Typical Methane Fired Power Plant
- 4.2 NiO/Ni-Al2O3 Chemical Looping Power Plant
- 4.1 CuO/Cu-Al2O3 Chemical Looping Power Plant
上架時間:2021-04-09 16:27:31
出版社:中國水利水電出版社
上海閱文信息技術(shù)有限公司已經(jīng)獲得合法授權(quán),并進(jìn)行制作發(fā)行
- References 更新時間:2021-04-09 18:35:56
- 4.5 Conclusions
- 4.4 Sensitive Analysis of Chemical Looping Systems
- 4.3 Typical Methane Fired Power Plant
- 4.2 NiO/Ni-Al2O3 Chemical Looping Power Plant
- 4.1 CuO/Cu-Al2O3 Chemical Looping Power Plant
- 4 Energy Balance and Exergy Analysis for CLC Models
- 3.2 Typical Methane Fired Power Plant
- 3.1 Chemical Looping Power Plant
- 3 Simulation Model Construction
- 2.2 Literature Review
- 2.1 Concepts of Chemical Looping Combustion
- 2 General Concepts and Literature Reviewed
- 1.3 Thesis Organization
- 1.2 Objectives and Methodology Used in This Work
- 1.1 Motivation
- 1 Introduction
- Abstract
- 8 Energy Balance and Exergy Analysis of Chemical Looping Systems with Different Oxygen Carriers
- References
- 5.2 Prospects
- 5.1 Conclusions
- 5 Conclusions and Prospects
- 4.3 Contrast and Analysis
- 4.2 Experimental and Theoretical Verification
- 4.1 Object Unfolding and Simulation
- 4 Simulation and Verification
- 3.4 Thermal-resistance Analysis
- 3.3 Cu Baseplate Thickness
- 3.2 DBC Substrate
- 3.1 Chip In-Between Space
- 3 Device Modeling and Analysis
- 2.2 Cooling Structure Introduction
- 2.1 Heat Transfer Theory Involved in Power Electronic Module
- 2 Introduction of Heat Transfer Structure for Power Device Cooling
- 1.3 Thesis Main Contents
- 1.2 Overseas and Domestic Research Status
- 1.1 Background
- 1 Introduction
- Acronyms and Abbreviations
- Notation
- Abstract
- 7 Study on Heat Dissipation Characteristics of IGBT Module Encapsulation
- References
- 5.2 Future Work
- 5.1 Conclusion
- 5 Conclusion and Future Work
- 4.3 ANN and ANFIS Models for the Research Office Building
- 4.2 Measured Data Analysis
- 4.1 Project Description
- 4 Model Validation Based on the Measured Data
- 3.4 Brief Summary
- 3.3 Comparison of ANN and ANFIS Models
- 3.2 ANFIS Model for GSHP System
- 3.1 ANN for GSHP System
- 3 ANN and ANFIS Models for GSHP System
- 2.4 Brief Summary
- 2.3 Model and Simulation of the Hybrid GSHP System
- 2.2 Hybrid GSHP Design
- 2.1 The Whole Year Hourly Dynamic Load Simulation Based on Dest-C
- 2 Model of a Hybrid GSHP Based on TRNSYS
- 1.4 Thesis Main Contents
- 1.3 Literature Review
- 1.2 General Introduction to a GSHP and the Evaluation Indexes Calculation Model
- 1.1 Thesis Statement and Significance of the Research
- 1 Introduction
- Acronyms and Abbreviations
- Notation
- Abstract
- 6 A Low Data Requirement Model for Ground Source Heat Pump Performance Evaluation
- References
- 6.2 Future Work
- 6.1 Conclusion
- 6 Conclusion and Future Work
- 5.3 Optimization of the System
- 5.2 Insights of Our Design
- 5.1 Comparison Between the Designing and Simulation Parameters
- 5 Simulation of the Designing Parameters
- 4.4 The Three-dimensional Modeling of the Key Parts
- 4.3 The Design of the Heat Exchangers
- 4.2 The Computing Process of the Schmidt Method
- 4.1 The Target Parameter
- 4 Design of a 500W Alpha Stirling Engine
- 3.3 The Correction of the Ideal Power of the Stirling Engine
- 3.2 Thermodynamic Design of the Stirling Engine
- 3.1 The Assumptions Used in the Improved Schmidt Analysis Method
- 3 Thermodynamic Analysis and Design of the Stirling Engine Based on the Improved Schmidt Analysis Method
- 2.6 Node Analysis Method
- 2.5 Isothermal Analysis Method and Adiabatic Analysis Method
- 2.4 The Schmidt Analysis Method
- 2.3 Current Analysis Methods of Stirling Engine
- 2.2 The Difference between Carnot Cycle and Stirling Cycle
- 2.1 The Stirling Cycle and Stirling Engine
- 2 Analysis and Design Methods of Stirling Engine
- 1.3 The Contents of This Research
- 1.2 Literature Review
- 1.1 The Motivation of the Topic
- 1 Introduction
- Abstract
- 5 Designing of 500W Stirling Engine
- 參考文獻(xiàn)
- 5.2 建議
- 5.1 總結(jié)
- 5 總結(jié)與建議
- 4.4 本章小結(jié)
- 4.3 類水滑石對CO2的吸附研究
- 4.2 SBA-15對CH4的吸附實(shí)驗(yàn)研究
- 4.1 SBA-15對CO2的吸附實(shí)驗(yàn)研究
- 4 SBA-15和類水滑石對CO2、CH4的吸附實(shí)驗(yàn)研究
- 3.6 本章小結(jié)
- 3.5 類水滑石煅燒前后、負(fù)載K2CO3后的物相分析
- 3.4 類水滑石煅煅燒后的結(jié)構(gòu)參數(shù)分析
- 3.3 2#、3#、4#SBA-15改性后的結(jié)構(gòu)參數(shù)分析
- 3.2 2#、3#、4# SBA-15改性前的結(jié)構(gòu)參數(shù)分析
- 3.1 1#SBA-15的表征分析
- 3 SBA-15和類水滑石樣品的物理特性分析
- 2.5 SBA-15和類水滑石對CO2、CH4吸附的實(shí)驗(yàn)方法
- 2.4 材料表征方法
- 2.3 類水滑石的制備和改性
- 2.2 SBA-15吸附材料的制備和改性
- 2.1 實(shí)驗(yàn)試劑和設(shè)備
- 2 SBA-15和類水滑石的制備、改性和氣體吸附實(shí)驗(yàn)方法
- 1.3 研究內(nèi)容和技術(shù)路線
- 1.2 研究概況
- 1.1 研究背景
- 1 緒論
- 摘要
- 4 SBA-15和類水滑石的制備及其吸附CO2和CH4的實(shí)驗(yàn)研究
- 參考文獻(xiàn)
- 5.2 展望
- 5.1 總結(jié)
- 5 總結(jié)與展望
- 4.5 本章小結(jié)
- 4.4 熱阻分析
- 4.3 底銅板厚度
- 4.2 DCB襯板
- 4.1 芯片間距
- 4 IGBT模塊散熱研究
- 3.5 本章小結(jié)
- 3.4 實(shí)驗(yàn)對照結(jié)果
- 3.3 理論計算
- 3.2 實(shí)驗(yàn)驗(yàn)證
- 3.1 樣品剖析與仿真模擬
- 3 IGBT熱學(xué)特性仿真模擬與驗(yàn)證
- 2.4 本章小結(jié)
- 2.3 電力電子器件的失效原因和散熱方式
- 2.2 傳熱學(xué)基本原理
- 2.1 基本結(jié)構(gòu)
- 2 IGBT封裝模塊與散熱分析
- 1.3 研究內(nèi)容
- 1.2 IGBT發(fā)展和研究現(xiàn)狀
- 1.1 研究背景
- 1 概論
- 摘要
- 3 IGBT封裝模塊散熱特性的研究
- 參考文獻(xiàn)
- 5.2 展望
- 5.1 總結(jié)
- 5 總結(jié)與展望
- 4.3 本章小結(jié)
- 4.2 基于浙江紹興某辦公樓實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 4.1 基于武漢某科研大樓實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 4 基于實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 3.4 本章小結(jié)
- 3.3 兩種模型的對比分析
- 3.2 ANFIS模型的建立
- 3.1 ANN模型的建立
- 3 ANN及ANFIS模型的建立
- 2.4 本章小結(jié)
- 2.3 混合式地源熱泵模型構(gòu)建及模擬
- 2.2 混合式地源熱泵系統(tǒng)設(shè)計
- 2.1 基于Dest軟件的全年動態(tài)負(fù)荷模擬
- 2 利用TRNSYS建立混合式地源熱泵系統(tǒng)模型
- 1.3 研究內(nèi)容
- 1.2 研究概況
- 1.1 研究背景與意義
- 1 緒論
- 摘要
- 2 基于ANN和ANFIS模型的地源熱泵系統(tǒng)性能評估
- 參考文獻(xiàn)
- 5.2 展望
- 5.1 總結(jié)
- 5 總結(jié)與展望
- 4.2 回?zé)崞鞯男阅軈?shù)數(shù)值模擬
- 4.1 整機(jī)的性能參數(shù)數(shù)值模擬
- 4 500W斯特林發(fā)動機(jī)性能參數(shù)數(shù)值模擬
- 3.3 換熱系統(tǒng)參數(shù)研究
- 3.2 斯密特分析法的分析過程
- 3.1 斯特林發(fā)動機(jī)整機(jī)物理模型
- 3 500W斯特林發(fā)動機(jī)整機(jī)及部件特性研究
- 2.3 斯特林發(fā)動機(jī)的分析方法
- 2.2 斯特林循環(huán)與卡諾循環(huán)的對比
- 2.1 斯特林循環(huán)
- 2 斯特林發(fā)動機(jī)分析方法的研究
- 1.4 研究內(nèi)容
- 1.3 斯特林發(fā)動機(jī)的研究概況
- 1.2 研究意義
- 1.1 研究背景
- 1 緒論
- 摘要
- 1 500W斯特林發(fā)動機(jī)特性研究與數(shù)值模擬
- Preface
- 前言
- 版權(quán)信息
- 封面
- 封面
- 版權(quán)信息
- 前言
- Preface
- 1 500W斯特林發(fā)動機(jī)特性研究與數(shù)值模擬
- 摘要
- 1 緒論
- 1.1 研究背景
- 1.2 研究意義
- 1.3 斯特林發(fā)動機(jī)的研究概況
- 1.4 研究內(nèi)容
- 2 斯特林發(fā)動機(jī)分析方法的研究
- 2.1 斯特林循環(huán)
- 2.2 斯特林循環(huán)與卡諾循環(huán)的對比
- 2.3 斯特林發(fā)動機(jī)的分析方法
- 3 500W斯特林發(fā)動機(jī)整機(jī)及部件特性研究
- 3.1 斯特林發(fā)動機(jī)整機(jī)物理模型
- 3.2 斯密特分析法的分析過程
- 3.3 換熱系統(tǒng)參數(shù)研究
- 4 500W斯特林發(fā)動機(jī)性能參數(shù)數(shù)值模擬
- 4.1 整機(jī)的性能參數(shù)數(shù)值模擬
- 4.2 回?zé)崞鞯男阅軈?shù)數(shù)值模擬
- 5 總結(jié)與展望
- 5.1 總結(jié)
- 5.2 展望
- 參考文獻(xiàn)
- 2 基于ANN和ANFIS模型的地源熱泵系統(tǒng)性能評估
- 摘要
- 1 緒論
- 1.1 研究背景與意義
- 1.2 研究概況
- 1.3 研究內(nèi)容
- 2 利用TRNSYS建立混合式地源熱泵系統(tǒng)模型
- 2.1 基于Dest軟件的全年動態(tài)負(fù)荷模擬
- 2.2 混合式地源熱泵系統(tǒng)設(shè)計
- 2.3 混合式地源熱泵模型構(gòu)建及模擬
- 2.4 本章小結(jié)
- 3 ANN及ANFIS模型的建立
- 3.1 ANN模型的建立
- 3.2 ANFIS模型的建立
- 3.3 兩種模型的對比分析
- 3.4 本章小結(jié)
- 4 基于實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 4.1 基于武漢某科研大樓實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 4.2 基于浙江紹興某辦公樓實(shí)測數(shù)據(jù)的模型驗(yàn)證
- 4.3 本章小結(jié)
- 5 總結(jié)與展望
- 5.1 總結(jié)
- 5.2 展望
- 參考文獻(xiàn)
- 3 IGBT封裝模塊散熱特性的研究
- 摘要
- 1 概論
- 1.1 研究背景
- 1.2 IGBT發(fā)展和研究現(xiàn)狀
- 1.3 研究內(nèi)容
- 2 IGBT封裝模塊與散熱分析
- 2.1 基本結(jié)構(gòu)
- 2.2 傳熱學(xué)基本原理
- 2.3 電力電子器件的失效原因和散熱方式
- 2.4 本章小結(jié)
- 3 IGBT熱學(xué)特性仿真模擬與驗(yàn)證
- 3.1 樣品剖析與仿真模擬
- 3.2 實(shí)驗(yàn)驗(yàn)證
- 3.3 理論計算
- 3.4 實(shí)驗(yàn)對照結(jié)果
- 3.5 本章小結(jié)
- 4 IGBT模塊散熱研究
- 4.1 芯片間距
- 4.2 DCB襯板
- 4.3 底銅板厚度
- 4.4 熱阻分析
- 4.5 本章小結(jié)
- 5 總結(jié)與展望
- 5.1 總結(jié)
- 5.2 展望
- 參考文獻(xiàn)
- 4 SBA-15和類水滑石的制備及其吸附CO2和CH4的實(shí)驗(yàn)研究
- 摘要
- 1 緒論
- 1.1 研究背景
- 1.2 研究概況
- 1.3 研究內(nèi)容和技術(shù)路線
- 2 SBA-15和類水滑石的制備、改性和氣體吸附實(shí)驗(yàn)方法
- 2.1 實(shí)驗(yàn)試劑和設(shè)備
- 2.2 SBA-15吸附材料的制備和改性
- 2.3 類水滑石的制備和改性
- 2.4 材料表征方法
- 2.5 SBA-15和類水滑石對CO2、CH4吸附的實(shí)驗(yàn)方法
- 3 SBA-15和類水滑石樣品的物理特性分析
- 3.1 1#SBA-15的表征分析
- 3.2 2#、3#、4# SBA-15改性前的結(jié)構(gòu)參數(shù)分析
- 3.3 2#、3#、4#SBA-15改性后的結(jié)構(gòu)參數(shù)分析
- 3.4 類水滑石煅煅燒后的結(jié)構(gòu)參數(shù)分析
- 3.5 類水滑石煅燒前后、負(fù)載K2CO3后的物相分析
- 3.6 本章小結(jié)
- 4 SBA-15和類水滑石對CO2、CH4的吸附實(shí)驗(yàn)研究
- 4.1 SBA-15對CO2的吸附實(shí)驗(yàn)研究
- 4.2 SBA-15對CH4的吸附實(shí)驗(yàn)研究
- 4.3 類水滑石對CO2的吸附研究
- 4.4 本章小結(jié)
- 5 總結(jié)與建議
- 5.1 總結(jié)
- 5.2 建議
- 參考文獻(xiàn)
- 5 Designing of 500W Stirling Engine
- Abstract
- 1 Introduction
- 1.1 The Motivation of the Topic
- 1.2 Literature Review
- 1.3 The Contents of This Research
- 2 Analysis and Design Methods of Stirling Engine
- 2.1 The Stirling Cycle and Stirling Engine
- 2.2 The Difference between Carnot Cycle and Stirling Cycle
- 2.3 Current Analysis Methods of Stirling Engine
- 2.4 The Schmidt Analysis Method
- 2.5 Isothermal Analysis Method and Adiabatic Analysis Method
- 2.6 Node Analysis Method
- 3 Thermodynamic Analysis and Design of the Stirling Engine Based on the Improved Schmidt Analysis Method
- 3.1 The Assumptions Used in the Improved Schmidt Analysis Method
- 3.2 Thermodynamic Design of the Stirling Engine
- 3.3 The Correction of the Ideal Power of the Stirling Engine
- 4 Design of a 500W Alpha Stirling Engine
- 4.1 The Target Parameter
- 4.2 The Computing Process of the Schmidt Method
- 4.3 The Design of the Heat Exchangers
- 4.4 The Three-dimensional Modeling of the Key Parts
- 5 Simulation of the Designing Parameters
- 5.1 Comparison Between the Designing and Simulation Parameters
- 5.2 Insights of Our Design
- 5.3 Optimization of the System
- 6 Conclusion and Future Work
- 6.1 Conclusion
- 6.2 Future Work
- References
- 6 A Low Data Requirement Model for Ground Source Heat Pump Performance Evaluation
- Abstract
- Notation
- Acronyms and Abbreviations
- 1 Introduction
- 1.1 Thesis Statement and Significance of the Research
- 1.2 General Introduction to a GSHP and the Evaluation Indexes Calculation Model
- 1.3 Literature Review
- 1.4 Thesis Main Contents
- 2 Model of a Hybrid GSHP Based on TRNSYS
- 2.1 The Whole Year Hourly Dynamic Load Simulation Based on Dest-C
- 2.2 Hybrid GSHP Design
- 2.3 Model and Simulation of the Hybrid GSHP System
- 2.4 Brief Summary
- 3 ANN and ANFIS Models for GSHP System
- 3.1 ANN for GSHP System
- 3.2 ANFIS Model for GSHP System
- 3.3 Comparison of ANN and ANFIS Models
- 3.4 Brief Summary
- 4 Model Validation Based on the Measured Data
- 4.1 Project Description
- 4.2 Measured Data Analysis
- 4.3 ANN and ANFIS Models for the Research Office Building
- 5 Conclusion and Future Work
- 5.1 Conclusion
- 5.2 Future Work
- References
- 7 Study on Heat Dissipation Characteristics of IGBT Module Encapsulation
- Abstract
- Notation
- Acronyms and Abbreviations
- 1 Introduction
- 1.1 Background
- 1.2 Overseas and Domestic Research Status
- 1.3 Thesis Main Contents
- 2 Introduction of Heat Transfer Structure for Power Device Cooling
- 2.1 Heat Transfer Theory Involved in Power Electronic Module
- 2.2 Cooling Structure Introduction
- 3 Device Modeling and Analysis
- 3.1 Chip In-Between Space
- 3.2 DBC Substrate
- 3.3 Cu Baseplate Thickness
- 3.4 Thermal-resistance Analysis
- 4 Simulation and Verification
- 4.1 Object Unfolding and Simulation
- 4.2 Experimental and Theoretical Verification
- 4.3 Contrast and Analysis
- 5 Conclusions and Prospects
- 5.1 Conclusions
- 5.2 Prospects
- References
- 8 Energy Balance and Exergy Analysis of Chemical Looping Systems with Different Oxygen Carriers
- Abstract
- 1 Introduction
- 1.1 Motivation
- 1.2 Objectives and Methodology Used in This Work
- 1.3 Thesis Organization
- 2 General Concepts and Literature Reviewed
- 2.1 Concepts of Chemical Looping Combustion
- 2.2 Literature Review
- 3 Simulation Model Construction
- 3.1 Chemical Looping Power Plant
- 3.2 Typical Methane Fired Power Plant
- 4 Energy Balance and Exergy Analysis for CLC Models
- 4.1 CuO/Cu-Al2O3 Chemical Looping Power Plant
- 4.2 NiO/Ni-Al2O3 Chemical Looping Power Plant
- 4.3 Typical Methane Fired Power Plant
- 4.4 Sensitive Analysis of Chemical Looping Systems
- 4.5 Conclusions
- References 更新時間:2021-04-09 18:35:56