舉報

會員
Building Machine Learning Systems with Python
最新章節:
Index
Thisisatutorial-drivenandpractical,butwell-groundedbookshowcasinggoodMachineLearningpractices.Therewillbeanemphasisonusingexistingtechnologiesinsteadofshowinghowtowriteyourownimplementationsofalgorithms.Thisbookisascenario-based,example-driventutorial.BytheendofthebookyouwillhavelearntcriticalaspectsofMachineLearningPythonprojectsandexperiencedthepowerofML-basedsystemsbyactuallyworkingonthem.ThisbookprimarilytargetsPythondeveloperswhowanttolearnaboutandbuildMachineLearningintotheirprojects,orwhowanttoprovideMachineLearningsupporttotheirexistingprojects,andseethemgetimplementedeffectively.Computerscienceresearchers,datascientists,ArtificialIntelligenceprogrammers,andstatisticalprogrammerswouldequallygainfromthisbookandwouldlearnabouteffectiveimplementationthroughlotsofthepracticalexamplesdiscussed.ReadersneednopriorexperiencewithMachineLearningorstatisticalprocessing.Pythondevelopmentexperienceisassumed.
目錄(91章)
倒序
- 封面
- 版權信息
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Preface
- Chapter 1. Getting Started with Python Machine Learning
- Machine learning and Python – the dream team
- What the book will teach you (and what it will not)
- What to do when you are stuck
- Getting started
- Our first (tiny) machine learning application
- Summary
- Chapter 2. Learning How to Classify with Real-world Examples
- The Iris dataset
- Building more complex classifiers
- A more complex dataset and a more complex classifier
- Binary and multiclass classification
- Summary
- Chapter 3. Clustering – Finding Related Posts
- Measuring the relatedness of posts
- Preprocessing – similarity measured as similar number of common words
- Clustering
- Solving our initial challenge
- Tweaking the parameters
- Summary
- Chapter 4. Topic Modeling
- Latent Dirichlet allocation (LDA)
- Comparing similarity in topic space
- Choosing the number of topics
- Summary
- Chapter 5. Classification – Detecting Poor Answers
- Sketching our roadmap
- Learning to classify classy answers
- Fetching the data
- Creating our first classifier
- Deciding how to improve
- Using logistic regression
- Looking behind accuracy – precision and recall
- Slimming the classifier
- Ship it!
- Summary
- Chapter 6. Classification II – Sentiment Analysis
- Sketching our roadmap
- Fetching the Twitter data
- Introducing the Naive Bayes classifier
- Creating our first classifier and tuning it
- Cleaning tweets
- Taking the word types into account
- Summary
- Chapter 7. Regression – Recommendations
- Predicting house prices with regression
- Penalized regression
- P greater than N scenarios
- Summary
- Chapter 8. Regression – Recommendations Improved
- Improved recommendations
- Basket analysis
- Summary
- Chapter 9. Classification III – Music Genre Classification
- Sketching our roadmap
- Fetching the music data
- Looking at music
- Using FFT to build our first classifier
- Improving classification performance with Mel Frequency Cepstral Coefficients
- Summary
- Chapter 10. Computer Vision – Pattern Recognition
- Introducing image processing
- Loading and displaying images
- Classifying a harder dataset
- Local feature representations
- Summary
- Chapter 11. Dimensionality Reduction
- Sketching our roadmap
- Selecting features
- Other feature selection methods
- Feature extraction
- Multidimensional scaling (MDS)
- Summary
- Chapter 12. Big(ger) Data
- Learning about big data
- Using jug to break up your pipeline into tasks
- Using Amazon Web Services (AWS)
- Summary
- Appendix A. Where to Learn More about Machine Learning
- Online courses
- Books
- What was left out
- Summary
- Index 更新時間:2021-08-13 16:36:01
推薦閱讀
- Extending Jenkins
- Data Visualization with D3 4.x Cookbook(Second Edition)
- iOS Game Programming Cookbook
- Spring Boot開發與測試實戰
- x86匯編語言:從實模式到保護模式(第2版)
- 精通軟件性能測試與LoadRunner實戰(第2版)
- 機械工程師Python編程:入門、實戰與進階
- TypeScript實戰指南
- Python編程與幾何圖形
- Learning Probabilistic Graphical Models in R
- HTML5+CSS3 Web前端開發技術(第2版)
- 基于SpringBoot實現:Java分布式中間件開發入門與實戰
- 零基礎學HTML+CSS
- UI設計基礎培訓教程(全彩版)
- 程序員必會的40種算法
- 零基礎學編程系列(全5冊)
- 分布式系統架構與開發:技術原理與面試題解析
- 熱處理常見缺陷分析與解決方案
- Java Web開發任務教程
- A/B 測試:創新始于試驗
- HTML 5與CSS 3權威指南(第4版·下冊)
- C#程序開發教程
- R語言
- Mastering Laravel
- Java 9 Cookbook
- 數據庫管理與開發項目教程:MySQL(微課版·第4版)
- INSTANT Meteor JavaScript Framework Starter
- OpenLayers 3.x Cookbook(Second Edition)
- 從0到1:HTML5+CSS3修煉之道
- C++程序設計與案例分析