舉報

會員
Advanced Analytics with R and Tableau
最新章節:
Index
ThisbookwillappealtoTableauuserswhowanttogobeyondtheTableauinterfaceanddeploythefullpotentialofTableau,byusingRtoperformadvancedanalyticswithTableau.AbasicfamiliaritywithRisusefulbutnotcompulsory,asthebookwillstartoffwithconcreteexamplesofRandwillmovequicklyintomoreadvancedspheresofanalyticsusingonlinedatasourcestosupporthands-onlearning.ThoseRdeveloperswhowanttointegrateRinTableauwillalsobenefitfromthisbook.
目錄(86章)
倒序
- 封面
- 書名頁
- Advanced Analytics with R and Tableau
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Advanced Analytics with R and Tableau
- Installing R for Windows
- RStudio
- Implementing the scripts for the book
- Tableau and R connectivity using Rserve
- Summary
- Chapter 2. The Power of R
- Core essentials of R programming
- Data structures in R
- Data frames
- Control structures in R
- For loops and vectorization in R
- Functions
- Creating your own function
- Making R run more efficiently in Tableau
- Summary
- Chapter 3. A Methodology for Advanced Analytics Using Tableau and R
- Industry standard methodologies for analytics
- CRISP-DM
- Team Data Science Process
- Working with dirty data
- Introduction to dplyr
- Summary
- Chapter 4. Prediction with R and Tableau Using Regression
- Getting started with regression
- Comparing actual values with predicted results
- Getting started with multiple regression?
- Solving the business question
- Sharing our data analysis using Tableau
- Summary
- Chapter 5. Classifying Data with Tableau
- Business understanding
- Understanding the data
- Modeling in R
- Model deployment
- Decision trees in Tableau using R
- Bayesian methods
- Graphs
- Summary
- Chapter 6. Advanced Analytics Using Clustering
- What is Clustering?
- Finding clusters in data
- Clustering in Tableau
- Clustering example in Tableau
- Interpreting your results
- How Clustering Works in Tableau
- Scaling
- Clustering without using k-means
- Statistics for Clustering
- Introduction to R
- Summary
- Chapter 7. Advanced Analytics with Unsupervised Learning
- What are neural networks?
- Backpropagation and Feedforward neural networks
- Evaluating a neural network model
- Neural network performance measures
- Visualizing neural network results
- Neural network in R
- Modeling and evaluating data in Tableau
- Summary
- Chapter 8. Interpreting Your Results for Your Audience
- Introduction to decision system and machine learning
- Decision system-based Bayesian
- Bayesian Theory
- Fuzzy logic
- Building a simple decision system-based Bayesian theory
- Integrating a decision system and IoT project
- Building your own decision system-based IoT
- Summary
- References
- Index 更新時間:2021-07-02 20:26:18
推薦閱讀
- Spring Boot 2實戰之旅
- 計算機網絡
- Node.js+Webpack開發實戰
- Oracle WebLogic Server 12c:First Look
- HTML5 移動Web開發從入門到精通(微課精編版)
- Python王者歸來
- Banana Pi Cookbook
- 微信公眾平臺開發:從零基礎到ThinkPHP5高性能框架實踐
- 零基礎入門學習Python
- 深入RabbitMQ
- Windows內核編程
- Visual Basic程序設計教程
- Learning PHP 7
- Swift 4從零到精通iOS開發
- 零基礎學C語言第2版
- Cocos2d-x by Example:Beginner's Guide(Second Edition)
- 數據分析與挖掘算法:Python實戰
- 算法訓練營:海量圖解+競賽刷題(入門篇)
- PHP程序設計高級教程
- Selenium WebDriver自動化測試完全指南
- 胸有成竹!數據分析的SPSS和SAS EG進階(第2版)
- 常用工具軟件(第4版)
- Learn C# in 7 days
- Scratch尋寶之旅
- Automating Microsoft Azure with PowerShell
- Learning Ceph
- C語言程序設計習題解析
- Java 9 High Performance
- Xamarin Mobile Development for Android Cookbook
- CimatronE 10.0三維設計與數控編程基本功特訓