首頁 > 計(jì)算機(jī)網(wǎng)絡(luò) >
編程語言與程序設(shè)計(jì)
> Practical Real-time Data Processing and Analytics最新章節(jié)目錄
舉報

會員
Practical Real-time Data Processing and Analytics
最新章節(jié):
Summary
IfyouareaJavadeveloperwhowouldliketobeequippedwithallthetoolsrequiredtodeviseanend-to-endpracticalsolutiononreal-timedatastreaming,thenthisbookisforyou.Basicknowledgeofreal-timeprocessingwouldbehelpful,andknowingthefundamentalsofMaven,Shell,andEclipsewouldbegreat.
目錄(229章)
倒序
- coverpage
- Title Page
- Copyright
- Practical Real-Time Data Processing and Analytics
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Errata
- Piracy
- Questions
- Introducing Real-Time Analytics
- What is big data?
- Big data infrastructure
- Real–time analytics – the myth and the reality
- Near real–time solution – an architecture that works
- NRT – The Storm solution
- NRT – The Spark solution
- Lambda architecture – analytics possibilities
- IOT – thoughts and possibilities
- Edge analytics
- Cloud – considerations for NRT and IOT
- Summary
- Real Time Applications – The Basic Ingredients
- The NRT system and its building blocks
- Data collection
- Stream processing
- Analytical layer – serve it to the end user
- NRT – high-level system view
- NRT – technology view
- Event producer
- Collection
- Broker
- Transformation and processing
- Storage
- Summary
- Understanding and Tailing Data Streams
- Understanding data streams
- Setting up infrastructure for data ingestion
- Apache Kafka
- Apache NiFi
- Logstash
- Fluentd
- Flume
- Taping data from source to the processor - expectations and caveats
- Comparing and choosing what works best for your use case
- Do it yourself
- Setting up Elasticsearch
- Summary
- Setting up the Infrastructure for Storm
- Overview of Storm
- Storm architecture and its components
- Characteristics
- Components
- Stream grouping
- Setting up and configuring Storm
- Setting up Zookeeper
- Installing
- Configuring
- Standalone
- Cluster
- Running
- Setting up Apache Storm
- Installing
- Configuring
- Running
- Real-time processing job on Storm
- Running job
- Local
- Cluster
- Summary
- Configuring Apache Spark and Flink
- Setting up and a quick execution of Spark
- Building from source
- Downloading Spark
- Running an example
- Setting up and a quick execution of Flink
- Build Flink source
- Download Flink
- Running example
- Setting up and a quick execution of Apache Beam
- Beam model
- Running example
- MinimalWordCount example walk through
- Balancing in Apache Beam
- Summary
- Integrating Storm with a Data Source
- RabbitMQ – messaging that works
- RabbitMQ exchanges
- Direct exchanges
- Fanout exchanges
- Topic exchanges
- Headers exchanges
- RabbitMQ setup
- RabbitMQ — publish and subscribe
- RabbitMQ – integration with Storm
- AMQPSpout
- PubNub data stream publisher
- String together Storm-RMQ-PubNub sensor data topology
- Summary
- From Storm to Sink
- Setting up and configuring Cassandra
- Setting up Cassandra
- Configuring Cassandra
- Storm and Cassandra topology
- Storm and IMDB integration for dimensional data
- Integrating the presentation layer with Storm
- Setting up Grafana with the Elasticsearch plugin
- Downloading Grafana
- Configuring Grafana
- Installing the Elasticsearch plugin in Grafana
- Running Grafana
- Adding the Elasticsearch datasource in Grafana
- Writing code
- Executing code
- Visualizing the output on Grafana
- Do It Yourself
- Summary
- Storm Trident
- State retention and the need for Trident
- Transactional spout
- Opaque transactional Spout
- Basic Storm Trident topology
- Trident internals
- Trident operations
- Functions
- map and flatMap
- peek
- Filters
- Windowing
- Tumbling window
- Sliding window
- Aggregation
- Aggregate
- Partition aggregate
- Persistence aggregate
- Combiner aggregator
- Reducer aggregator
- Aggregator
- Grouping
- Merge and joins
- DRPC
- Do It Yourself
- Summary
- Working with Spark
- Spark overview
- Spark framework and schedulers
- Distinct advantages of Spark
- When to avoid using Spark
- Spark – use cases
- Spark architecture - working inside the engine
- Spark pragmatic concepts
- RDD – the name says it all
- Spark 2.x – advent of data frames and datasets
- Summary
- Working with Spark Operations
- Spark – packaging and API
- RDD pragmatic exploration
- Transformations
- Actions
- Shared variables – broadcast variables and accumulators
- Broadcast variables
- Accumulators
- Summary
- Spark Streaming
- Spark Streaming concepts
- Spark Streaming - introduction and architecture
- Packaging structure of Spark Streaming
- Spark Streaming APIs
- Spark Streaming operations
- Connecting Kafka to Spark Streaming
- Summary
- Working with Apache Flink
- Flink architecture and execution engine
- Flink basic components and processes
- Integration of source stream to Flink
- Integration with Apache Kafka
- Example
- Integration with RabbitMQ
- Running example
- Flink processing and computation
- DataStream API
- DataSet API
- Flink persistence
- Integration with Cassandra
- Running example
- FlinkCEP
- Pattern API
- Detecting pattern
- Selecting from patterns
- Example
- Gelly
- Gelly API
- Graph representation
- Graph creation
- Graph transformations
- DIY
- Summary
- Case Study
- Introduction
- Data modeling
- Tools and frameworks
- Setting up the infrastructure
- Implementing the case study
- Building the data simulator
- Hazelcast loader
- Building Storm topology
- Parser bolt
- Check distance and alert bolt
- Generate alert Bolt
- Elasticsearch Bolt
- Complete Topology
- Running the case study
- Load Hazelcast
- Generate Vehicle static value
- Deploy topology
- Start simulator
- Visualization using Kibana
- Summary 更新時間:2021-07-08 10:23:51
推薦閱讀
- C語言程序設(shè)計(jì)
- RTC程序設(shè)計(jì):實(shí)時音視頻權(quán)威指南
- C++面向?qū)ο蟪绦蛟O(shè)計(jì)習(xí)題解答與上機(jī)指導(dǎo)(第三版)
- PHP編程基礎(chǔ)與實(shí)踐教程
- Django實(shí)戰(zhàn):Python Web典型模塊與項(xiàng)目開發(fā)
- ASP.NET Web API Security Essentials
- Advanced Python Programming
- C#面向?qū)ο蟪绦蛟O(shè)計(jì)(第2版)
- JavaScript編程精解(原書第2版)
- SEO教程:搜索引擎優(yōu)化入門與進(jìn)階(第3版)
- Mastering PowerCLI
- 新手學(xué)ASP.NET 3.5網(wǎng)絡(luò)開發(fā)
- Visual FoxPro數(shù)據(jù)庫程序設(shè)計(jì)
- Visual C++實(shí)用教程
- Web應(yīng)用程序設(shè)計(jì):ASP
- Xamarin Cross-platform Application Development(Second Edition)
- 天天學(xué)敏捷:Scrum團(tuán)隊(duì)轉(zhuǎn)型記
- 架構(gòu)寶典
- 股票多因子模型實(shí)戰(zhàn):Python核心代碼解析
- 術(shù)以載道:軟件過程改進(jìn)實(shí)踐指南
- Python 3.6零基礎(chǔ)入門與實(shí)戰(zhàn)
- Scala并發(fā)編程(第2版)
- UI設(shè)計(jì)心理學(xué)
- Mastering Cloud Development using Microsoft Azure
- 交互的Python:數(shù)據(jù)分析入門
- Axure RP8產(chǎn)品原型設(shè)計(jì)快速上手指南
- C語言從初學(xué)到精通
- C++程序設(shè)計(jì)(第2版)
- UI設(shè)計(jì)基礎(chǔ)培訓(xùn)教程(全彩版·第2版)
- 數(shù)據(jù)結(jié)構(gòu)(C++語言版)