目錄(197章)
倒序
- coverpage
- Title Page
- Copyright
- Jupyter for Data Science
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Errata
- Piracy
- Questions
- Jupyter and Data Science
- Jupyter concepts
- A first look at the Jupyter user interface
- Detailing the Jupyter tabs
- What actions can I perform with Jupyter?
- What objects can Jupyter manipulate?
- Viewing the Jupyter project display
- File menu
- Edit menu
- View menu
- Insert menu
- Cell menu
- Kernel menu
- Help menu
- Icon toolbar
- How does it look when we execute scripts?
- Industry data science usage
- Real life examples
- Finance Python - European call option valuation
- Finance Python - Monte Carlo pricing
- Gambling R - betting analysis
- Insurance R - non-life insurance pricing
- Consumer products R - marketing effectiveness
- Using Docker with Jupyter
- Using a public Docker service
- Installing Docker on your machine
- How to share notebooks with others
- Can you email a notebook?
- Sharing a notebook on Google Drive
- Sharing on GitHub
- Store as HTML on a web server
- Install Jupyter on a web server
- How can you secure a notebook?
- Access control
- Malicious content
- Summary
- Working with Analytical Data on Jupyter
- Data scraping with a Python notebook
- Using heavy-duty data processing functions in Jupyter
- Using NumPy functions in Jupyter
- Using pandas in Jupyter
- Use pandas to read text files in Jupyter
- Use pandas to read Excel files in Jupyter
- Using pandas to work with data frames
- Using the groupby function in a data frame
- Manipulating columns in a data frame
- Calculating outliers in a data frame
- Using SciPy in Jupyter
- Using SciPy integration in Jupyter
- Using SciPy optimization in Jupyter
- Using SciPy interpolation in Jupyter
- Using SciPy Fourier Transforms in Jupyter
- Using SciPy linear algebra in Jupyter
- Expanding on panda data frames in Jupyter
- Sorting and filtering data frames in Jupyter/IPython
- Filtering a data frame
- Sorting a data frame
- Summary
- Data Visualization and Prediction
- Make a prediction using scikit-learn
- Make a prediction using R
- Interactive visualization
- Plotting using Plotly
- Creating a human density map
- Draw a histogram of social data
- Plotting 3D data
- Summary
- Data Mining and SQL Queries
- Special note for Windows installation
- Using Spark to analyze data
- Another MapReduce example
- Using SparkSession and SQL
- Combining datasets
- Loading JSON into Spark
- Using Spark pivot
- Summary
- R with Jupyter
- How to set up R for Jupyter
- R data analysis of the 2016 US election demographics
- Analyzing 2016 voter registration and voting
- Analyzing changes in college admissions
- Predicting airplane arrival time
- Summary
- Data Wrangling
- Reading a CSV file
- Reading another CSV file
- Manipulating data with dplyr
- Converting a data frame to a dplyr table
- Getting a quick overview of the data value ranges
- Sampling a dataset
- Filtering rows in a data frame
- Adding a column to a data frame
- Obtaining a summary on a calculated field
- Piping data between functions
- Obtaining the 99% quantile
- Obtaining a summary on grouped data
- Tidying up data with tidyr
- Summary
- Jupyter Dashboards
- Visualizing glyph ready data
- Publishing a notebook
- Font markdown
- List markdown
- Heading markdown
- Table markdown
- Code markdown
- More markdown
- Creating a Shiny dashboard
- R application coding
- Publishing your dashboard
- Building standalone dashboards
- Summary
- Statistical Modeling
- Converting JSON to CSV
- Evaluating Yelp reviews
- Summary data
- Review spread
- Finding the top rated firms
- Finding the most rated firms
- Finding all ratings for a top rated firm
- Determining the correlation between ratings and number of reviews
- Building a model of reviews
- Using Python to compare ratings
- Visualizing average ratings by cuisine
- Arbitrary search of ratings
- Determining relationships between number of ratings and ratings
- Summary
- Machine Learning Using Jupyter
- Naive Bayes
- Naive Bayes using R
- Naive Bayes using Python
- Nearest neighbor estimator
- Nearest neighbor using R
- Nearest neighbor using Python
- Decision trees
- Decision trees in R
- Decision trees in Python
- Neural networks
- Neural networks in R
- Random forests
- Random forests in R
- Summary
- Optimizing Jupyter Notebooks
- Deploying notebooks
- Deploying to JupyterHub
- Installing JupyterHub
- Accessing a JupyterHub Installation
- Jupyter hosting
- Optimizing your script
- Optimizing your Python scripts
- Determining how long a script takes
- Using Python regular expressions
- Using Python string handling
- Minimizing loop operations
- Profiling your script
- Optimizing your R scripts
- Using microbenchmark to profile R script
- Modifying provided functionality
- Optimizing name lookup
- Optimizing data frame value extraction
- Changing R Implementation
- Changing algorithms
- Monitoring Jupyter
- Caching your notebook
- Securing a notebook
- Managing notebook authorization
- Securing notebook content
- Scaling Jupyter Notebooks
- Sharing Jupyter Notebooks
- Sharing Jupyter Notebook on a notebook server
- Sharing encrypted Jupyter Notebook on a notebook server
- Sharing notebook on a web server
- Sharing notebook on Docker
- Converting a notebook
- Versioning a notebook
- Summary 更新時間:2021-07-08 09:23:06
推薦閱讀
- HTML5+CSS3王者歸來
- Java 9 Concurrency Cookbook(Second Edition)
- 程序員面試算法寶典
- Extending Puppet(Second Edition)
- Python算法指南:程序員經典算法分析與實現
- 微信小程序開發與實戰(微課版)
- 自學Python:編程基礎、科學計算及數據分析(第2版)
- 深入理解BootLoader
- Java Web從入門到精通(第2版)
- 愛上C語言:C KISS
- ASP.NET Web API Security Essentials
- UI設計基礎培訓教程(全彩版)
- 程序員的成長課
- 零基礎學Java第2版
- XML程序設計(第二版)
- Qt編程快速入門
- SAP HANA Starter
- Unreal Engine 4 Game Development Essentials
- R語言編程:基于tidyverse
- 零基礎玩轉Python
- 算法競賽寶典(第一部):語言及算法入門
- Go語言項目開發上手指南
- Helm學習指南:Kubernetes上的應用程序管理
- Java 9 Data Structures and Algorithms
- C語言編程兵書
- 數據結構(C語言實現)
- AMD FPGA設計優化寶典:面向Vivado/VHDL
- Vagrant開發運維實戰
- Visual Basic程序設計教程(第3版)
- 圖解CSS3:核心技術與案例實戰