舉報

會員
Hands-On Machine Learning with JavaScript
ThisbookisforyouifyouareaJavaScriptdeveloperwhowantstoimplementmachinelearningtomakeapplicationssmarter,gaininsightfulinformationfromthedata,andenterthefieldofmachinelearningwithoutswitchingtoanotherlanguage.WorkingknowledgeofJavaScriptlanguageisexpectedtogetthemostoutofthebook.
目錄(157章)
倒序
- 封面
- 版權信息
- Packt Upsell
- Why subscribe?
- PacktPub.com
- Contributors
- About the author
- About the reviewer
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- Exploring the Potential of JavaScript
- Why JavaScript?
- Why machine learning why now?
- Advantages and challenges of JavaScript
- The CommonJS initiative
- Node.js
- TypeScript language
- Improvements in ES6
- Let and const
- Classes
- Module imports
- Arrow functions
- Object literals
- The for...of function
- Promises
- The async/await functions
- Preparing the development environment
- Installing Node.js
- Optionally installing Yarn
- Creating and initializing an example project
- Creating a Hello World project
- Summary
- Data Exploration
- An overview
- Feature identification
- The curse of dimensionality
- Feature selection and feature extraction
- Pearson correlation example
- Cleaning and preparing data
- Handling missing data
- Missing categorical data
- Missing numerical data
- Handling noise
- Handling outliers
- Transforming and normalizing data
- Summary
- Tour of Machine Learning Algorithms
- Introduction to machine learning
- Types of learning
- Unsupervised learning
- Supervised learning
- Measuring accuracy
- Supervised learning algorithms
- Reinforcement learning
- Categories of algorithms
- Clustering
- Classification
- Regression
- Dimensionality reduction
- Optimization
- Natural language processing
- Image processing
- Summary
- Grouping with Clustering Algorithms
- Average and distance
- Writing the k-means algorithm
- Setting up the environment
- Initializing the algorithm
- Testing random centroid generation
- Assigning points to centroids
- Updating centroid locations
- The main loop
- Example 1 – k-means on simple 2D data
- Example 2 – 3D data
- k-means where k is unknown
- Summary
- Classification Algorithms
- k-Nearest Neighbor
- Building the KNN algorithm
- Example 1 – Height weight and gender
- Example 2 – Decolorizing a photo
- Naive Bayes classifier
- Tokenization
- Building the algorithm
- Example 3 – Movie review sentiment
- Support Vector Machine
- Random forest
- Association Rule Algorithms
- The mathematical perspective
- The algorithmic perspective
- Association rule applications
- Example – retail data
- Summary
- Forecasting with Regression Algorithms
- Regression versus classification
- Regression basics
- Example 1 – linear regression
- Example 2 – exponential regression
- Example 3 – polynomial regression
- Other time-series analysis techniques
- Filtering
- Seasonality analysis
- Fourier analysis
- Summary
- Artificial Neural Network Algorithms
- Conceptual overview of neural networks
- Backpropagation training
- Example - XOR in TensorFlow.js
- Summary
- Deep Neural Networks
- Convolutional Neural Networks
- Convolutions and convolution layers
- Example – MNIST handwritten digits
- Recurrent neural networks
- SimpleRNN
- Gated recurrent units
- Long Short-Term Memory
- Summary
- Natural Language Processing in Practice
- String distance
- Term frequency - inverse document frequency
- Tokenizing
- Stemming
- Phonetics
- Part of speech tagging
- Word embedding and neural networks
- Summary
- Using Machine Learning in Real-Time Applications
- Serializing models
- Training models on the server
- Web workers
- Continually improving and per-user models
- Data pipelines
- Data querying
- Data joining and aggregation
- Transformation and normalization
- Storing and delivering data
- Summary
- Choosing the Best Algorithm for Your Application
- Mode of learning
- The task at hand
- Format form input and output
- Available resources
- When it goes wrong
- Combining models
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-06-25 21:38:42
推薦閱讀
- Mastering Proxmox(Third Edition)
- PowerShell 3.0 Advanced Administration Handbook
- Excel 2007函數與公式自學寶典
- Python Artificial Intelligence Projects for Beginners
- 樂高機器人EV3設計指南:創造者的搭建邏輯
- Learning Social Media Analytics with R
- 自動檢測與轉換技術
- JSF2和RichFaces4使用指南
- Apache Superset Quick Start Guide
- Practical Big Data Analytics
- 貫通Java Web開發三劍客
- DevOps Bootcamp
- Dreamweaver+Photoshop+Flash+Fireworks網站建設與網頁設計完全實用
- 手把手教你學Flash CS3
- 機器人剛柔耦合動力學
- 巧學活用Linux
- Mastering Windows Group Policy
- Orange'S:一個操作系統的實現
- 局域網組建與管理技術詳解
- 微機原理及接口技術
- DevOps:Puppet,Docker,and Kubernetes
- 仿狗機器人的設計與制作
- 人工智能與大數據技術導論
- 西門子故障安全系統應用指南
- TensorFlow:Powerful Predictive Analytics with TensorFlow
- UGNX 5三維造型
- 可重入生產系統的多尺度建模與控制策略研究
- Creo 6.0中文版完全自學手冊(第3版)
- UG NX 5中文版完美自學手冊
- 數字思維