舉報

會員
PyTorch Deep Learning Hands-On
最新章節:
Index
PyTorchDeepLearningHands-Onisabookforengineerswhowantafast-pacedguidetodoingdeeplearningworkwithPytorch.Itisnotanacademictextbookanddoesnottrytoteachdeeplearningprinciples.ThebookwillhelpyoumostifyouwanttogetyourhandsdirtyandputPyTorchtoworkquickly.PyTorchDeepLearningHands-OnshowshowtoimplementthemajordeeplearningarchitecturesinPyTorch.Itcoversneuralnetworks,computervision,CNNs,naturallanguageprocessing(RNN),GANs,andreinforcementlearning.YouwillalsobuilddeeplearningworkflowswiththePyTorchframework,migratemodelsbuiltinPythontohighlyefficientTorchScript,anddeploytoproductionusingthemostsophisticatedavailabletools.Eachchapterfocusesonadifferentareaofdeeplearning.Chaptersstartwitharefresheronhowthemodelworks,beforesharingthecodeyouneedtoimplementtheminPyTorch.ThisbookisidealifyouwanttorapidlyaddPyTorchtoyourdeeplearningtoolset.
目錄(64章)
倒序
- 封面
- 版權頁
- Why subscribe?
- Packt.com
- Contributors
- About the authors
- About the reviewers
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Get in touch
- Chapter 1. Deep Learning Walkthrough and PyTorch Introduction
- Understanding PyTorch's history
- What is PyTorch?
- Using computational graphs
- Exploring deep learning
- Getting started with the code
- Chapter 2. A Simple Neural Network
- Introduction to the neural network
- The problem
- Dataset
- Novice model
- The PyTorch way
- Summary
- References
- Chapter 3. Deep Learning Workflow
- Ideation and planning
- Design and experimentation
- Model implementation
- Training and validation
- Summary
- References
- Chapter 4. Computer Vision
- Introduction to CNNs
- Computer vision with PyTorch
- Chapter 5. Sequential Data Processing
- Introduction to recurrent neural networks
- The problem
- Approaches
- Summary
- References
- Chapter 6. Generative Networks
- Defining the approaches
- Autoregressive models
- GANs
- Summary
- References
- Chapter 7. Reinforcement Learning
- The problem
- Episodic versus continuous tasks
- Cumulative discounted rewards
- Markov decision processes
- The solution
- Summary
- References
- Chapter 8. PyTorch to Production
- Serving with Flask
- ONNX
- Efficiency with TorchScript
- Exploring RedisAI
- Summary
- References
- Index 更新時間:2021-06-11 13:28:31
推薦閱讀
- Microsoft Dynamics CRM Customization Essentials
- 人工智能超越人類
- Getting Started with MariaDB
- Learning Social Media Analytics with R
- 工業機器人入門實用教程(KUKA機器人)
- iClone 4.31 3D Animation Beginner's Guide
- 數據庫原理與應用技術
- 教育機器人的風口:全球發展現狀及趨勢
- 奇點將至
- 工業自動化技術實訓指導
- 青少年VEX IQ機器人實訓課程(初級)
- MPC5554/5553微處理器揭秘
- 計算機應用基礎實訓(職業模塊)
- 網絡信息安全項目教程
- 人工智能:重塑個人、商業與社會
- Office 2010輕松入門
- 多媒體技術應用教程
- Apache Spark Machine Learning Blueprints
- 多傳感器數據智能融合理論與應用
- 數字中國:大數據與政府管理決策
- OpenGL Development Cookbook
- 仿狗機器人的設計與制作
- 軸向磁場無刷同步電機理論與設計
- 基于多核平臺的嵌入式系統設計方法
- 零起點學西門子變頻器應用
- 網絡硬件搭建與配置實踐
- Windows Server 2008系統管理與網絡管理
- ABB工業機器人進階編程與應用
- 交互設計的用戶研究踐行之路
- 物聯網安全技術