舉報

會員
The Applied Artificial Intelligence Workshop
Youalreadyknowthatartificialintelligence(AI)andmachinelearning(ML)arepresentinmanyofthetoolsyouuseinyourdailyroutine.ButdoyouwanttobeabletocreateyourownAIandMLmodelsanddevelopyourskillsinthesedomainstokickstartyourAIcareer?TheAppliedArtificialIntelligenceWorkshopgetsyoustartedwithapplyingAIwiththehelpofpracticalexercisesandusefulexamples,allputtogethercleverlytohelpyougaintheskillstotransformyourcareer.Thebookbeginsbyteachingyouhowtopredictoutcomesusingregression.You’llthenlearnhowtoclassifydatausingtechniquessuchask-nearestneighbor(KNN)andsupportvectormachine(SVM)classifiers.Asyouprogress,you'llexplorevariousdecisiontreesbylearninghowtobuildareliabledecisiontreemodelthatcanhelpyourcompanyfindcarsthatclientsarelikelytobuy.Thefinalchapterswillintroduceyoutodeeplearningandneuralnetworks.Throughvariousactivities,suchaspredictingstockpricesandrecognizinghandwrittendigits,you'lllearnhowtotrainandimplementconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).BytheendofthisappliedAIbook,you'llhavelearnedhowtopredictoutcomesandtrainneuralnetworksandbeabletousevarioustechniquestodevelopAIandMLmodels.
目錄(65章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Artificial Intelligence
- Introduction
- Fields and Applications of AI
- AI Tools and Learning Models
- The Role of Python in AI
- Python for Game AI
- Heuristics
- Pathfinding with the A* Algorithm
- Introducing the A* Algorithm
- Game AI with the Minmax Algorithm and Alpha-Beta Pruning
- The Minmax Algorithm
- DRYing Up the Minmax Algorithm – the NegaMax Algorithm
- Summary
- 2. An Introduction to Regression
- Introduction
- Linear Regression with One Variable
- Linear Regression with Multiple Variables
- Polynomial and Support Vector Regression
- Support Vector Regression
- Summary
- 3. An Introduction to Classification
- Introduction
- The Fundamentals of Classification
- Data Preprocessing
- The K-Nearest Neighbors Classifier
- Classification with Support Vector Machines
- Summary
- 4. An Introduction to Decision Trees
- Introduction
- Decision Trees
- The Confusion Matrix
- Random Forest Classifier
- Summary
- 5. Artificial Intelligence: Clustering
- Introduction
- Defining the Clustering Problem
- Clustering Approaches
- The K-Means Algorithm
- The Mean Shift Algorithm
- Clustering Performance Evaluation
- Summary
- 6. Neural Networks and Deep Learning
- Introduction
- Artificial Neurons
- Neurons in TensorFlow
- Neural Network Architecture
- Activation Functions
- Forward Propagation and the Loss Function
- Backpropagation
- Optimizers and the Learning Rate
- Regularization
- Deep Learning
- Computer Vision and Image Classification
- Recurrent Neural Networks (RNNs)
- Summary
- Appendix
- 1. Introduction to Artificial Intelligence
- 2. An Introduction to Regression
- 3. An Introduction to Classification
- 4. An Introduction to Decision Trees
- 5. Artificial Intelligence: Clustering
- 6. Neural Networks and Deep Learning 更新時間:2021-06-18 18:25:27
推薦閱讀
- Windows phone 7.5 application development with F#
- 圖解西門子S7-200系列PLC入門
- Instant uTorrent
- 電腦軟硬件維修大全(實例精華版)
- Intel FPGA/CPLD設計(高級篇)
- 精選單片機設計與制作30例(第2版)
- 嵌入式系統設計教程
- 深入淺出SSD:固態存儲核心技術、原理與實戰(第2版)
- Learning Stencyl 3.x Game Development Beginner's Guide
- 電腦軟硬件維修從入門到精通
- 筆記本電腦使用、維護與故障排除從入門到精通(第5版)
- 固態存儲:原理、架構與數據安全
- 單片機技術及應用
- 基于網絡化教學的項目化單片機應用技術
- Zabbix 4 Network Monitoring
- 筆記本電腦現場維修實錄
- 零基礎輕松學修電腦主板
- INSTANT Cinema 4D Starter
- The Complete Guide to DAZ Studio 4
- 51單片機應用開發從入門到精通
- 微處理器及控制電路識圖
- Hands-On Unsupervised Learning with Python
- 電腦組裝與硬件維修從新手到高手
- 51單片機新穎實例非常入門與視頻演練
- GateIn Cookbook
- 主板維修精華秘籍
- 小創客輕松玩轉micro:bit
- IntelliJ IDEA Essentials
- 嵌入式系統軟硬件協同設計實戰指南:基于Xilinx ZYNQ(第2版)
- 新硬件主義