舉報

會員
The Unsupervised Learning Workshop
最新章節:
9. Hotspot Analysis
DoyoufinditdifficulttounderstandhowpopularcompanieslikeWhatsAppandAmazonfindvaluableinsightsfromlargeamountsofunorganizeddata?TheUnsupervisedLearningWorkshopwillgiveyoutheconfidencetodealwithclutteredandunlabeleddatasets,usingunsupervisedalgorithmsinaneasyandinteractivemanner.Thebookstartsbyintroducingthemostpopularclusteringalgorithmsofunsupervisedlearning.You'llfindouthowhierarchicalclusteringdiffersfromk-means,alongwithunderstandinghowtoapplyDBSCANtohighlycomplexandnoisydata.Movingahead,you'lluseautoencodersforefficientdataencoding.Asyouprogress,you’lluset-SNEmodelstoextracthigh-dimensionalinformationintoalowerdimensionforbettervisualization,inadditiontoworkingwithtopicmodelingforimplementingnaturallanguageprocessing(NLP).Inlaterchapters,you’llfindkeyrelationshipsbetweencustomersandbusinessesusingMarketBasketAnalysis,beforegoingontouseHotspotAnalysisforestimatingthepopulationdensityofanarea.Bytheendofthisbook,you’llbeequippedwiththeskillsyouneedtoapplyunsupervisedalgorithmsoncluttereddatasetstofindusefulpatternsandinsights.
目錄(72章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Clustering
- Introduction
- Unsupervised Learning versus Supervised Learning
- Clustering
- Introduction to k-means Clustering
- Summary
- 2. Hierarchical Clustering
- Introduction
- Clustering Refresher
- The Organization of the Hierarchy
- Introduction to Hierarchical Clustering
- Linkage
- Agglomerative versus Divisive Clustering
- k-means versus Hierarchical Clustering
- Summary
- 3. Neighborhood Approaches and DBSCAN
- Introduction
- Clusters as Neighborhoods
- Introduction to DBSCAN
- DBSCAN versus k-means and Hierarchical Clustering
- Summary
- 4. Dimensionality Reduction Techniques and PCA
- Introduction
- What Is Dimensionality Reduction?
- Overview of Dimensionality Reduction Techniques
- Principal Component Analysis
- Summary
- 5. Autoencoders
- Introduction
- Fundamentals of Artificial Neural Networks
- Autoencoders
- Summary
- 6. t-Distributed Stochastic Neighbor Embedding
- Introduction
- The MNIST Dataset
- Stochastic Neighbor Embedding (SNE)
- t-Distributed SNE
- Interpreting t-SNE Plots
- Summary
- 7. Topic Modeling
- Introduction
- Topic Models
- Cleaning Text Data
- Latent Dirichlet Allocation
- Non-Negative Matrix Factorization
- Summary
- 8. Market Basket Analysis
- Introduction
- Market Basket Analysis
- Characteristics of Transaction Data
- The Apriori Algorithm
- Association Rules
- Summary
- 9. Hotspot Analysis
- Introduction
- Spatial Statistics
- Kernel Density Estimation
- Hotspot Analysis
- Summary
- Appendix
- 1. Introduction to Clustering
- 2. Hierarchical Clustering
- 3. Neighborhood Approaches and DBSCAN
- 4. Dimensionality Reduction Techniques and PCA
- 5. Autoencoders
- 6. t-Distributed Stochastic Neighbor Embedding
- 7. Topic Modeling
- 8. Market Basket Analysis
- 9. Hotspot Analysis 更新時間:2021-06-18 18:13:09
推薦閱讀
- 24小時學會電腦組裝與維護
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- Deep Learning with PyTorch
- Artificial Intelligence Business:How you can profit from AI
- VCD、DVD原理與維修
- 計算機組裝與維修技術
- 超大流量分布式系統架構解決方案:人人都是架構師2.0
- 單片機原理及應用:基于C51+Proteus仿真
- 3D Printing Blueprints
- Mastering Machine Learning on AWS
- The Artificial Intelligence Infrastructure Workshop
- FPGA實驗實訓教程
- 單片機原理及應用
- 可編程邏輯器件項目開發設計
- Blender for Video Production Quick Start Guide
- FPGA實戰訓練精粹
- 嵌入式系統設計大學教程(第2版)
- Deep Learning with Keras
- 筆記本電腦的結構、原理與維修
- Service Mesh微服務架構設計
- Arduino項目開發:智能控制
- Sketchbook Pro Digital Painting Essentials
- 數字噴墨與應用
- Nginx應用與運維實戰
- ARM嵌入式體系結構與接口技術(Cortex-A9版)(微課版)
- PlayStation?Mobile Development Cookbook
- 32位嵌入式微處理器原理及應用
- Photographic Rendering with VRay for SketchUp
- Unity 2D Game Development
- 創客三級跳:Arduino的項目式學習