舉報

會員
The Unsupervised Learning Workshop
最新章節:
9. Hotspot Analysis
DoyoufinditdifficulttounderstandhowpopularcompanieslikeWhatsAppandAmazonfindvaluableinsightsfromlargeamountsofunorganizeddata?TheUnsupervisedLearningWorkshopwillgiveyoutheconfidencetodealwithclutteredandunlabeleddatasets,usingunsupervisedalgorithmsinaneasyandinteractivemanner.Thebookstartsbyintroducingthemostpopularclusteringalgorithmsofunsupervisedlearning.You'llfindouthowhierarchicalclusteringdiffersfromk-means,alongwithunderstandinghowtoapplyDBSCANtohighlycomplexandnoisydata.Movingahead,you'lluseautoencodersforefficientdataencoding.Asyouprogress,you’lluset-SNEmodelstoextracthigh-dimensionalinformationintoalowerdimensionforbettervisualization,inadditiontoworkingwithtopicmodelingforimplementingnaturallanguageprocessing(NLP).Inlaterchapters,you’llfindkeyrelationshipsbetweencustomersandbusinessesusingMarketBasketAnalysis,beforegoingontouseHotspotAnalysisforestimatingthepopulationdensityofanarea.Bytheendofthisbook,you’llbeequippedwiththeskillsyouneedtoapplyunsupervisedalgorithmsoncluttereddatasetstofindusefulpatternsandinsights.
目錄(72章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Clustering
- Introduction
- Unsupervised Learning versus Supervised Learning
- Clustering
- Introduction to k-means Clustering
- Summary
- 2. Hierarchical Clustering
- Introduction
- Clustering Refresher
- The Organization of the Hierarchy
- Introduction to Hierarchical Clustering
- Linkage
- Agglomerative versus Divisive Clustering
- k-means versus Hierarchical Clustering
- Summary
- 3. Neighborhood Approaches and DBSCAN
- Introduction
- Clusters as Neighborhoods
- Introduction to DBSCAN
- DBSCAN versus k-means and Hierarchical Clustering
- Summary
- 4. Dimensionality Reduction Techniques and PCA
- Introduction
- What Is Dimensionality Reduction?
- Overview of Dimensionality Reduction Techniques
- Principal Component Analysis
- Summary
- 5. Autoencoders
- Introduction
- Fundamentals of Artificial Neural Networks
- Autoencoders
- Summary
- 6. t-Distributed Stochastic Neighbor Embedding
- Introduction
- The MNIST Dataset
- Stochastic Neighbor Embedding (SNE)
- t-Distributed SNE
- Interpreting t-SNE Plots
- Summary
- 7. Topic Modeling
- Introduction
- Topic Models
- Cleaning Text Data
- Latent Dirichlet Allocation
- Non-Negative Matrix Factorization
- Summary
- 8. Market Basket Analysis
- Introduction
- Market Basket Analysis
- Characteristics of Transaction Data
- The Apriori Algorithm
- Association Rules
- Summary
- 9. Hotspot Analysis
- Introduction
- Spatial Statistics
- Kernel Density Estimation
- Hotspot Analysis
- Summary
- Appendix
- 1. Introduction to Clustering
- 2. Hierarchical Clustering
- 3. Neighborhood Approaches and DBSCAN
- 4. Dimensionality Reduction Techniques and PCA
- 5. Autoencoders
- 6. t-Distributed Stochastic Neighbor Embedding
- 7. Topic Modeling
- 8. Market Basket Analysis
- 9. Hotspot Analysis 更新時間:2021-06-18 18:13:09
推薦閱讀
- Linux KVM虛擬化架構實戰指南
- 龍芯應用開發標準教程
- 計算機組裝與系統配置
- 計算機組裝·維護與故障排除
- Camtasia Studio 8:Advanced Editing and Publishing Techniques
- 計算機組裝與維修技術
- 筆記本電腦應用技巧
- 深入理解序列化與反序列化
- 無蘋果不生活:OS X Mountain Lion 隨身寶典
- Arduino項目開發:智能生活
- 計算機組成技術教程
- The Reinforcement Learning Workshop
- 計算機應用基礎案例教程(Windows 7+Office 2010)
- 超炫的35個Arduino制作項目
- Unreal Engine 4 AI Programming Essentials
- 計算機組裝與維護項目化教程(第二版)
- 電腦組裝與維修實戰
- Arduino項目開發:智能控制
- FPGA設計技巧與案例開發詳解
- 多媒體技術教程
- Fixing Bad UX Designs
- 中國SOA最佳應用及云計算融合實踐
- Building Smart LEGO MINDSTORMS EV3 Robots
- 圖解芯片技術
- Getting started with IntelliJ IDEA
- Hands-On Convolutional Neural Networks with TensorFlow
- 計算機主板維修不是事兒(第2版)
- Managing Multimedia and Unstructured Data in the Oracle Database
- Building Forms with Vue.js
- KVM實戰:原理、進階與性能調優