舉報

會員
The Artificial Intelligence Infrastructure Workshop
Socialnetworkingsitesseeanaverageof350millionuploadsdaily-aquantityimpossibleforhumanstoscanandanalyze.OnlyAIcandothisjobattherequiredspeed,andtoleverageanAIapplicationatitsfullpotential,youneedanefficientandscalabledatastoragepipeline.TheArtificialIntelligenceInfrastructureWorkshopwillteachyouhowtobuildandmanageone.TheArtificialIntelligenceInfrastructureWorkshopbeginstakingyouthroughsomereal-worldapplicationsofAI.You’llexplorethelayersofadatalakeandgettogripswithsecurity,scalability,andmaintainability.Withthehelpofhands-onexercises,you’lllearnhowtodefinetherequirementsforAIapplicationsinyourorganization.ThisAIbookwillshowyouhowtoselectadatabaseforyoursystemandruncommonqueriesondatabasessuchasMySQL,MongoDB,andCassandra.You’llalsodesignyourownAItradingsystemtogetafeelofthepipeline-basedarchitecture.AsyoulearntoimplementadeepQ-learningalgorithmtoplaytheCartPolegame,you’llgainhands-onexperiencewithPyTorch.Finally,you’llexplorewaystorunmachinelearningmodelsinproductionaspartofanAIapplication.Bytheendofthebook,you’llhavelearnedhowtobuildanddeployyourownAIsoftwareatscale,usingvarioustools,APIframeworks,andserializationmethods.
目錄(104章)
倒序
- 封面
- 版權信息
- Preface
- 1. Data Storage Fundamentals
- Introduction
- Problems Solved by Machine Learning
- Optimizing the Storing and Processing of Data for Machine Learning Problems
- Diving into Text Classification
- Looking at Terminology in Text Classification Tasks
- Designing for Scale – Choosing the Right Architecture and Hardware
- Using Vectorized Operations to Analyze Data Fast
- Summary
- 2. Artificial Intelligence Storage Requirements
- Introduction
- Storage Requirements
- Data Layers
- Raw Data
- Historical Data
- Streaming Data
- Analytics Data
- Model Development and Training
- Summary
- 3. Data Preparation
- Introduction
- ETL
- Data Processing Techniques
- Streaming Data
- Summary
- 4. The Ethics of AI Data Storage
- Introduction
- Summary
- 5. Data Stores: SQL and NoSQL Databases
- Introduction
- Database Components
- SQL Databases
- MySQL
- NoSQL Databases
- MongoDB
- Cassandra
- Exploring the Collective Knowledge of Databases
- Summary
- 6. Big Data File Formats
- Introduction
- Common Input Files
- Choosing the Right Format for Your Data
- Introduction to File Formats
- Summary
- 7. Introduction to Analytics Engine (Spark) for Big Data
- Introduction
- Apache Spark
- Apache Spark and Databricks
- Understanding Various Spark Transformations
- Understanding Various Spark Actions
- Best Practices
- Summary
- 8. Data System Design Examples
- Introduction
- The Importance of System Design
- Components to Consider in System Design
- Examining a Pipeline Design for an AI System
- Making a Pipeline System Highly Available
- Summary
- 9. Workflow Management for AI
- Introduction
- Creating Your Data Pipeline
- Challenges in Managing Processes in the Real World
- Automating a Data Pipeline
- Automating Asynchronous Data Pipelines
- Workflow Management with Airflow
- Summary
- 10. Introduction to Data Storage on Cloud Services (AWS)
- Introduction
- Interacting with Cloud Storage
- Getting Started with Cloud Relational Databases
- Introduction to NoSQL Data Stores on the Cloud
- Data in Document Format
- Summary
- 11. Building an Artificial Intelligence Algorithm
- Introduction
- Machine Learning Algorithms
- Model Training
- Gradient Descent
- Getting Started with PyTorch
- Mini-Batch SGD with PyTorch
- Summary
- 12. Productionizing Your AI Applications
- Introduction
- pickle and Flask
- Deploying Models to Production
- Model Execution in Streaming Data Applications
- Summary
- Appendix
- 1. Data Storage Fundamentals
- 2. Artificial Intelligence Storage Requirements
- 3. Data Preparation
- 4. Ethics of AI Data Storage
- 5. Data Stores: SQL and NoSQL Databases
- 6. Big Data File Formats
- 7. Introduction to Analytics Engine (Spark) for Big Data
- 8. Data System Design Examples
- 9. Workflow Management for AI
- 10. Introduction to Data Storage on Cloud Services (AWS)
- 11. Building an Artificial Intelligence Algorithm
- 12. Productionizing Your AI Applications 更新時間:2021-06-11 18:35:51
推薦閱讀
- Arduino入門基礎教程
- Learning SQL Server Reporting Services 2012
- 深入理解Spring Cloud與實戰
- 硬件產品經理手冊:手把手構建智能硬件產品
- Artificial Intelligence Business:How you can profit from AI
- Arduino BLINK Blueprints
- VMware Workstation:No Experience Necessary
- 單片機技術及應用
- Wireframing Essentials
- Spring Cloud實戰
- Mastering Quantum Computing with IBM QX
- 筆記本電腦維修技能實訓
- USB應用開發寶典
- 計算機組裝、維護與維修項目教程
- 3D打印:Geomagic Design X5.1 逆向建模設計實用教程
- Unreal Development Kit Game Programming with UnrealScript:Beginner's Guide
- INSTANT Cinema 4D Starter
- 計算機組裝與維護項目化教程(第二版)
- Applied Supervised Learning with R
- 三菱FX2N系列PLC入門與應用實例
- GateIn Cookbook
- Blender Cycles:Lighting and Rendering Cookbook
- 阿里巴巴Java開發手冊(第2版)
- 電腦組裝與維修從入門到精通
- The Unsupervised Learning Workshop
- Creo 機械設計實例教程(6.0版)
- 范例學電腦系統安裝與維護
- 主板芯片級維修高級教程
- 零基礎學電子與Arduino:給編程新手的開發板入門指南(全彩圖解)
- Python GUI Programming Cookbook