首頁 > 計算機網(wǎng)絡(luò) >
專用軟件
> Applied Deep Learning and Computer Vision for Self/Driving Cars最新章節(jié)目錄
舉報

會員
Applied Deep Learning and Computer Vision for Self/Driving Cars
Exploreself-drivingcartechnologyusingdeeplearningandartificialintelligencetechniquesandlibrariessuchasTensorFlow,Keras,andOpenCVKeyFeatures*Buildandtrainpowerfulneuralnetworkmodelstobuildanautonomouscar*Implementcomputervision,deeplearning,andAItechniquestocreateautomotivealgorithms*OvercomethechallengesfacedwhileautomatingdifferentaspectsofdrivingusingmodernPythonlibrariesandarchitecturesBookDescriptionThankstoanumberofrecentbreakthroughs,self-drivingcartechnologyisnowanemergingsubjectinthefieldofartificialintelligenceandhasshifteddatascientists'focustobuildingautonomouscarsthatwilltransformtheautomotiveindustry.Thisbookisacomprehensiveguidetousedeeplearningandcomputervisiontechniquestodevelopautonomouscars.Startingwiththebasicsofself-drivingcars(SDCs),thisbookwilltakeyouthroughthedeepneuralnetworktechniquesrequiredtogetupandrunningwithbuildingyourautonomousvehicle.Onceyouarecomfortablewiththebasics,you'lldelveintoadvancedcomputervisiontechniquesandlearnhowtousedeeplearningmethodstoperformavarietyofcomputervisiontaskssuchasfindinglanelines,improvingimageclassification,andsoon.Youwillexplorethebasicstructureandworkingofasemanticsegmentationmodelandgettogripswithdetectingcarsusingsemanticsegmentation.Thebookalsocoversadvancedapplicationssuchasbehavior-cloningandvehicledetectionusingOpenCV,transferlearning,anddeeplearningmethodologiestotrainSDCstomimichumandriving.Bytheendofthisbook,you'llhavelearnedhowtoimplementavarietyofneuralnetworkstodevelopyourownautonomousvehicleusingmodernPythonlibraries.Whatyouwilllearn*ImplementdeepneuralnetworkfromscratchusingtheKeraslibrary*Understandtheimportanceofdeeplearninginself-drivingcars*GettogripswithfeatureextractiontechniquesinimageprocessingusingtheOpenCVlibrary*Designasoftwarepipelinethatdetectslanelinesinvideos*Implementaconvolutionalneuralnetwork(CNN)imageclassifierfortrafficsignalsigns*Trainandtestneuralnetworksforbehavioral-cloningbydrivingacarinavirtualsimulator*Discovervariousstate-of-the-artsemanticsegmentationandobjectdetectionarchitecturesWhothisbookisforIfyouareadeeplearningengineer,AIresearcher,oranyonelookingtoimplementdeeplearningandcomputervisiontechniquestobuildself-drivingblueprintsolutions,thisbookisforyou.Anyonewhowantstolearnhowvariousautomotive-relatedalgorithmsarebuilt,willalsofindthisbookuseful.Pythonprogrammingexperience,alongwithabasicunderstandingofdeeplearning,isnecessarytogetthemostofthisbook.
目錄(88章)
倒序
- coverpage
- Applied Deep Learning and Computer Vision for Self-Driving Cars
- Why subscribe?
- Contributors
- About the authors
- About the reviewers
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Get in touch
- Section 1: Deep Learning Foundation and SDC Basics
- The Foundation of Self-Driving Cars
- Introduction to SDCs
- Challenges in current deployments
- Levels of autonomy
- Deep learning and computer vision approaches for SDCs
- Summary
- Dive Deep into Deep Neural Networks
- Diving deep into neural networks
- Understanding neurons and perceptrons
- The workings of ANNs
- Understanding activation functions
- The cost function of neural networks
- Optimizers
- Understanding hyperparameters
- TensorFlow versus Keras
- Summary
- Implementing a Deep Learning Model Using Keras
- Starting work with Keras
- Keras for deep learning
- Building your first deep learning model
- Summary
- Section 2: Deep Learning and Computer Vision Techniques for SDC
- Computer Vision for Self-Driving Cars
- Introduction to computer vision
- Building blocks of an image
- Color space techniques
- Introduction to convolution
- Edge detection and gradient calculation
- Image transformation
- Summary
- Finding Road Markings Using OpenCV
- Finding road markings in an image
- Detecting road markings in a video
- Summary
- Improving the Image Classifier with CNN
- Images in computer format
- Introducing CNNs
- Introduction to handwritten digit recognition
- Summary
- Road Sign Detection Using Deep Learning
- Dataset overview
- Loading the data
- Image exploration
- Data preparation
- Model training
- Model accuracy
- Summary
- Section 3: Semantic Segmentation for Self-Driving Cars
- The Principles and Foundations of Semantic Segmentation
- Introduction to semantic segmentation
- Understanding the semantic segmentation architecture
- Overview of different semantic segmentation architectures
- Summary
- Implementing Semantic Segmentation
- Semantic segmentation in images
- Semantic segmentation in videos
- Summary
- Section 4: Advanced Implementations
- Behavioral Cloning Using Deep Learning
- Neural network for regression
- Behavior cloning using deep learning
- Summary
- Vehicle Detection Using OpenCV and Deep Learning
- What makes YOLO different?
- The YOLO loss function
- The YOLO architecture
- Implementation of YOLO object detection
- Summary
- Next Steps
- SDC sensors
- Introduction to sensor fusion
- Kalman filter
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-04-09 23:13:26
推薦閱讀
- Photoshop CS6 商業(yè)應(yīng)用案例實戰(zhàn)
- 中文版Photoshop CS6平面設(shè)計實用教程(第2版)
- CAD/CAM技術(shù)與應(yīng)用
- NHibernate 2 Beginner's Guide
- Photoshop CC 2017從入門到精通
- 中文版CorelDRAW X6基礎(chǔ)培訓(xùn)教程(第2版)
- Microsoft Dynamics GP 2010 Reporting
- 綁定的藝術(shù):Maya高級角色骨骼綁定技法(第2版)
- Designing and Implementing Linux Firewalls and QoS using netfilter, iproute2, NAT and l7/filter
- TopSolid Wood軟件設(shè)計技術(shù)與應(yīng)用
- Python Testing Cookbook
- 蝶變:移動用戶體驗設(shè)計之道
- 好用,Excel數(shù)據(jù)處理高手
- Vulkan實戰(zhàn)
- 中文版Maya 2016基礎(chǔ)培訓(xùn)教程
- Photoshop人像精修秘笈
- Photoshop CC中文版基礎(chǔ)教程
- 3ds Max 2014/VRay效果圖制作實戰(zhàn)從入門到精通
- Alfresco 3 Cookbook
- AI繪畫大師:Stable Diffusion快速入門與實戰(zhàn)技巧
- 圖像處理系統(tǒng)
- 解密AI繪畫與修圖:Stable Diffusion+Photoshop
- 好學(xué)、好用、好玩的Photoshop 寫給初學(xué)者的入門書(第2版)
- Illustrator CS6平面設(shè)計應(yīng)用教程(第2版)
- After Effects 2024從入門到精通
- InDesign CC 版式設(shè)計標(biāo)準(zhǔn)教程(微課版)
- Illustrator CC 2018從新手到高手
- 電路板設(shè)計與開發(fā):Altium Designer應(yīng)用教程
- 預(yù)測模型實戰(zhàn):基于R、SPSS和Stata
- Python圖像處理經(jīng)典實例